Suppr超能文献

利用文本聚类技术在在线社区中发现与健康相关的热门话题。

Health-related hot topic detection in online communities using text clustering.

机构信息

Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai, China.

出版信息

PLoS One. 2013;8(2):e56221. doi: 10.1371/journal.pone.0056221. Epub 2013 Feb 15.

Abstract

Recently, health-related social media services, especially online health communities, have rapidly emerged. Patients with various health conditions participate in online health communities to share their experiences and exchange healthcare knowledge. Exploring hot topics in online health communities helps us better understand patients' needs and interest in health-related knowledge. However, the statistical topic analysis employed in previous studies is becoming impractical for processing the rapidly increasing amount of online data. Automatic topic detection based on document clustering is an alternative approach for extracting health-related hot topics in online communities. In addition to the keyword-based features used in traditional text clustering, we integrate medical domain-specific features to represent the messages posted in online health communities. Three disease discussion boards, including boards devoted to lung cancer, breast cancer and diabetes, from an online health community are used to test the effectiveness of topic detection. Experiment results demonstrate that health-related hot topics primarily include symptoms, examinations, drugs, procedures and complications. Further analysis reveals that there also exist some significant differences among the hot topics discussed on different types of disease discussion boards.

摘要

最近,与健康相关的社交媒体服务,特别是在线健康社区,迅速兴起。患有各种健康状况的患者参与在线健康社区,分享他们的经验并交流医疗保健知识。探索在线健康社区中的热门话题可以帮助我们更好地了解患者对健康相关知识的需求和兴趣。然而,以前研究中使用的基于统计的主题分析对于处理快速增长的在线数据变得不切实际。基于文档聚类的自动主题检测是提取在线社区中与健康相关的热门主题的另一种方法。除了传统文本聚类中使用的基于关键字的特征外,我们还整合了医学领域特定的特征来表示在线健康社区中发布的消息。使用来自在线健康社区的三个疾病讨论板(包括肺癌、乳腺癌和糖尿病讨论板)来测试主题检测的有效性。实验结果表明,健康相关的热门话题主要包括症状、检查、药物、程序和并发症。进一步的分析表明,不同类型的疾病讨论板上讨论的热门话题也存在一些显著差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e1d/3574139/02eb5ce6c2ad/pone.0056221.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验