Suppr超能文献

在社交媒体上寻找用户的声音:对 Facebook 上受自闭症影响的用户的在线支持小组的调查。

Finding Users' Voice on Social Media: An Investigation of Online Support Groups for Autism-Affected Users on Facebook.

机构信息

School of Information Management, Jiangsu Key Laboratory of Data Engineering and Knowledge Service, Nanjing University, Nanjing 210023, China.

School of Information Studies, University of Wisconsin Milwaukee, Milwaukee, WI 53211, USA.

出版信息

Int J Environ Res Public Health. 2019 Nov 29;16(23):4804. doi: 10.3390/ijerph16234804.

Abstract

The trend towards the use of the Internet for health information purposes is rising. Utilization of various forms of social media has been a key interest in consumer health informatics (CHI). To reveal the information needs of autism-affected users, this study centers on the research of users' interactions and information sharing within autism communities on social media. It aims to understand how autism-affected users utilize support groups on Facebook by applying natural language process (NLP) techniques to unstructured health data in social media. An interactive visualization method (pyLDAvis) was employed to evaluate produced models and visualize the inter-topic distance maps. The revealed topics (e.g., parenting, education, behavior traits) identify issues that individuals with autism were concerned about on a daily basis and how they addressed such concerns in the form of group communication. In addition to general social support, disease-specific information, collective coping strategies, and emotional support were provided as well by group members based on similar personal experiences. This study concluded that Latent Dirichlet Allocation (LDA) is feasible and appropriated to derive topics (focus) from messages posted to the autism support groups on Facebook. The revealed topics help healthcare professionals (content providers) understand autism from users' perspectives and provide better patient communications.

摘要

利用互联网获取健康信息的趋势日益上升。消费者健康信息学(CHI)主要关注各种形式的社交媒体的利用。为了揭示受自闭症影响的用户的信息需求,本研究集中于研究社交媒体上自闭症社区内用户的互动和信息共享。它旨在通过应用自然语言处理(NLP)技术来理解受自闭症影响的用户如何利用 Facebook 上的支持小组利用社交媒体中的非结构化健康数据。采用交互式可视化方法(pyLDAvis)来评估生成的模型并可视化主题之间的距离图。揭示的主题(例如,育儿、教育、行为特征)确定了自闭症患者每天关注的问题,以及他们如何以小组交流的形式解决这些问题。除了一般的社会支持外,根据相似的个人经验,小组成员还提供了特定于疾病的信息、集体应对策略和情感支持。本研究得出结论,潜在狄利克雷分配(LDA)是可行的,适用于从 Facebook 上的自闭症支持小组发布的消息中提取主题(焦点)。揭示的主题有助于医疗保健专业人员(内容提供者)从用户的角度理解自闭症,并提供更好的患者沟通。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e001/6926495/9647e6d7f29e/ijerph-16-04804-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验