Yang Rui, Bao Zhenghong, Sun Yifan
Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Biomaterials, Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506, United States.
ACS Nanosci Au. 2023 Jan 27;3(2):140-152. doi: 10.1021/acsnanoscienceau.2c00057. eCollection 2023 Apr 19.
The marriage between nanoscience and heterogeneous catalysis has introduced transformative opportunities for accessing better nanocatalysts. However, the structural heterogeneity of nanoscale solids stemming from distinct atomic configurations makes it challenging to realize atomic-level engineering of nanocatalysts in the way that is attained for homogeneous catalysis. Here, we discuss recent efforts in unveiling and exploiting the structural heterogeneity of nanomaterials for enhanced catalysis. Size and facet control of nanoscale domains produce well-defined nanostructures that facilitate mechanistic studies. Differentiation of surface and bulk characteristics for ceria-based nanocatalysts guides new thoughts toward lattice oxygen activation. Manipulating the compositional and species heterogeneity between local and average structures allows regulation of catalytically active sites via the ensemble effect. Studies on catalyst restructurings further highlight the necessity to assess the reactivity and stability of nanocatalysts under reaction conditions. These advances promote the development of novel nanocatalysts with expanded functionalities and bring atomistic insights into heterogeneous catalysis.
纳米科学与多相催化的结合为获得更好的纳米催化剂带来了变革性机遇。然而,由于不同的原子构型导致纳米级固体的结构异质性,使得以均相催化所实现的方式对纳米催化剂进行原子级工程设计具有挑战性。在此,我们讨论了近期在揭示和利用纳米材料的结构异质性以增强催化方面所做的努力。纳米级域的尺寸和晶面控制产生了明确的纳米结构,便于进行机理研究。基于二氧化铈的纳米催化剂的表面和体相特征的区分引导了关于晶格氧活化的新思路。操纵局部结构与平均结构之间的组成和物种异质性,可通过系综效应调节催化活性位点。对催化剂重构的研究进一步凸显了在反应条件下评估纳米催化剂的反应活性和稳定性的必要性。这些进展推动了具有扩展功能的新型纳米催化剂的开发,并为多相催化带来了原子层面的见解。