Suppr超能文献

从显微镜图像中定位和提取丝状体分布。

Localizing and extracting filament distributions from microscopy images.

机构信息

Center for Bioimage Informatics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.

出版信息

J Microsc. 2013 Apr;250(1):57-67. doi: 10.1111/jmi.12018.

Abstract

Detailed quantitative measurements of biological filament networks represent a crucial step in understanding architecture and structure of cells and tissues, which in turn explain important biological events such as wound healing and cancer metastases. Confocal microscope images of biological specimens marked for different structural proteins constitute an important source for observing and measuring meaningful parameters of biological networks. Unfortunately, current efforts at quantitative estimation of architecture and orientation of biological filament networks from microscopy images are predominantly limited to visual estimation and indirect experimental inference. Here we describe a new method for localizing and extracting filament distributions from 2D confocal microscopy images. The method combines a filter-based detection of pixels likely to contain a filament with a constrained reverse diffusion-based approach for localizing the filaments centrelines. We show with qualitative and quantitative experiments, using both simulated and real data, that the new method can provide more accurate centreline estimates of filament in comparison to other approaches currently available. In addition, we show the algorithm is more robust with respect to variations in the initial filter-based filament detection step often used. We demonstrate the application of the method in extracting quantitative parameters from an experiment that seeks to quantify the effects of carbon nanotubes on actin cytoskeleton in live HeLa cells. We show that their presence can disrupt the overall actin cytoskeletal organization in such cells.

摘要

详细的生物丝网络定量测量代表了理解细胞和组织结构和架构的关键步骤,这反过来又解释了重要的生物学事件,如伤口愈合和癌症转移。对标记有不同结构蛋白的生物样本的共焦显微镜图像进行分析,是观察和测量生物网络有意义参数的重要来源。不幸的是,目前从显微镜图像中定量估计生物丝网络的结构和方向的努力主要局限于视觉估计和间接实验推断。在这里,我们描述了一种从 2D 共焦显微镜图像中定位和提取丝分布的新方法。该方法结合了基于滤波器的像素检测和基于约束反向扩散的方法来定位丝的中心线。我们使用模拟和真实数据进行定性和定量实验,表明与目前可用的其他方法相比,新方法可以提供更准确的丝中心线估计。此外,我们还表明,该算法对于通常用于初始基于滤波器的丝检测步骤的变化更具鲁棒性。我们展示了该方法在从实验中提取定量参数方面的应用,该实验旨在量化碳纳米管对活 HeLa 细胞中肌动蛋白细胞骨架的影响。我们表明,它们的存在可以破坏这些细胞中整体的肌动蛋白细胞骨架组织。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54c3/3638952/ccbad7d8609b/nihms457479f1.jpg

相似文献

6
Quantification of biopolymer filament structure.生物聚合物细丝结构的量化
Ultramicroscopy. 2005 Oct;104(3-4):244-54. doi: 10.1016/j.ultramic.2005.04.007.
9
3D actin network centerline extraction with multiple active contours.基于多个活动轮廓的三维肌动蛋白网络中心线提取
Med Image Anal. 2014 Feb;18(2):272-84. doi: 10.1016/j.media.2013.10.015. Epub 2013 Nov 16.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验