Center for Bioimage Informatics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
J Microsc. 2013 Apr;250(1):57-67. doi: 10.1111/jmi.12018.
Detailed quantitative measurements of biological filament networks represent a crucial step in understanding architecture and structure of cells and tissues, which in turn explain important biological events such as wound healing and cancer metastases. Confocal microscope images of biological specimens marked for different structural proteins constitute an important source for observing and measuring meaningful parameters of biological networks. Unfortunately, current efforts at quantitative estimation of architecture and orientation of biological filament networks from microscopy images are predominantly limited to visual estimation and indirect experimental inference. Here we describe a new method for localizing and extracting filament distributions from 2D confocal microscopy images. The method combines a filter-based detection of pixels likely to contain a filament with a constrained reverse diffusion-based approach for localizing the filaments centrelines. We show with qualitative and quantitative experiments, using both simulated and real data, that the new method can provide more accurate centreline estimates of filament in comparison to other approaches currently available. In addition, we show the algorithm is more robust with respect to variations in the initial filter-based filament detection step often used. We demonstrate the application of the method in extracting quantitative parameters from an experiment that seeks to quantify the effects of carbon nanotubes on actin cytoskeleton in live HeLa cells. We show that their presence can disrupt the overall actin cytoskeletal organization in such cells.
详细的生物丝网络定量测量代表了理解细胞和组织结构和架构的关键步骤,这反过来又解释了重要的生物学事件,如伤口愈合和癌症转移。对标记有不同结构蛋白的生物样本的共焦显微镜图像进行分析,是观察和测量生物网络有意义参数的重要来源。不幸的是,目前从显微镜图像中定量估计生物丝网络的结构和方向的努力主要局限于视觉估计和间接实验推断。在这里,我们描述了一种从 2D 共焦显微镜图像中定位和提取丝分布的新方法。该方法结合了基于滤波器的像素检测和基于约束反向扩散的方法来定位丝的中心线。我们使用模拟和真实数据进行定性和定量实验,表明与目前可用的其他方法相比,新方法可以提供更准确的丝中心线估计。此外,我们还表明,该算法对于通常用于初始基于滤波器的丝检测步骤的变化更具鲁棒性。我们展示了该方法在从实验中提取定量参数方面的应用,该实验旨在量化碳纳米管对活 HeLa 细胞中肌动蛋白细胞骨架的影响。我们表明,它们的存在可以破坏这些细胞中整体的肌动蛋白细胞骨架组织。