Suppr超能文献

比率成像中噪声诱导的系统误差:严重伪影及多分辨率去噪校正

Noise-induced systematic errors in ratio imaging: serious artefacts and correction with multi-resolution denoising.

作者信息

Wang Yu-Li

机构信息

University of Massachusetts Medical School, 377 Plantation Street, Suite 327, Worcester, MA 01605, USA.

出版信息

J Microsc. 2007 Nov;228(Pt 2):123-31. doi: 10.1111/j.1365-2818.2007.01834.x.

Abstract

Ratio imaging is playing an increasingly important role in modern cell biology. Combined with ratiometric dyes or fluorescence resonance energy transfer (FRET) biosensors, the approach allows the detection of conformational changes and molecular interactions in living cells. However, the approach is conducted increasingly under limited signal-to-noise ratio (SNR), where noise from multiple images can easily accumulate and lead to substantial uncertainty in ratio values. This study demonstrates that a far more serious concern is systematic errors that generate artificially high ratio values at low SNR. Thus, uneven SNR alone may lead to significant variations in ratios among different regions of a cell. Although correct average ratios may be obtained by applying conventional noise reduction filters, such as a Gaussian filter before calculating the ratio, these filters have a limited performance at low SNR and are prone to artefacts such as generating discrete domains not found in the correct ratio image. Much more reliable restoration may be achieved with multi-resolution denoising filters that take into account the actual noise characteristics of the detector. These filters are also capable of restoring structural details and photometric accuracy, and may serve as a general tool for retrieving reliable information from low-light live cell images.

摘要

比率成像在现代细胞生物学中发挥着越来越重要的作用。结合比率染料或荧光共振能量转移(FRET)生物传感器,该方法能够检测活细胞中的构象变化和分子相互作用。然而,该方法越来越多地在有限的信噪比(SNR)条件下进行,多个图像中的噪声很容易累积,并导致比率值出现很大的不确定性。本研究表明,一个更严重的问题是系统误差,即在低信噪比下会产生人为的高比率值。因此,仅信噪比不均匀就可能导致细胞不同区域之间的比率出现显著差异。尽管通过在计算比率之前应用传统的降噪滤波器(如高斯滤波器)可以获得正确的平均比率,但这些滤波器在低信噪比下性能有限,并且容易产生伪像,例如生成正确比率图像中不存在的离散区域。使用考虑探测器实际噪声特性的多分辨率去噪滤波器可以实现更可靠的恢复。这些滤波器还能够恢复结构细节和光度精度,并可作为从低光活细胞图像中检索可靠信息的通用工具。

相似文献

1
2
[Progress in filters for denoising cryo-electron microscopy images].
Beijing Da Xue Xue Bao Yi Xue Ban. 2021 Mar 3;53(2):425-433. doi: 10.19723/j.issn.1671-167X.2021.02.033.
3
High-SNR multiple T (*)-contrast magnetic resonance imaging using a robust denoising method based on tissue characteristics.
J Magn Reson Imaging. 2017 Jun;45(6):1835-1845. doi: 10.1002/jmri.25477. Epub 2016 Sep 16.
4
Noise reduction of cDNA microarray images using complex wavelets.
IEEE Trans Image Process. 2010 Aug;19(8):1953-67. doi: 10.1109/TIP.2010.2045691. Epub 2010 Apr 5.
5
Image denoising for real-time MRI.
Magn Reson Med. 2017 Mar;77(3):1340-1352. doi: 10.1002/mrm.26205. Epub 2016 Apr 15.
6
Adaptive averaging for improved SNR in real-time coronary artery MRI.
IEEE Trans Med Imaging. 2004 Aug;23(8):1034-45. doi: 10.1109/TMI.2004.828677.
10
Denoising in fluorescence microscopy using compressed sensing with multiple reconstructions and non-local merging.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3394-7. doi: 10.1109/IEMBS.2010.5627931.

引用本文的文献

1
Smart Applications of Lanthanide Chelates-based Luminescent Probes in Bio-imaging.
Mini Rev Med Chem. 2025;25(7):505-520. doi: 10.2174/0113895575350677250101060606.
3
Extraction of Individual Filaments from 2D Confocal Microscopy Images of Flat Cells.
IEEE/ACM Trans Comput Biol Bioinform. 2015 May-Jun;12(3):632-43. doi: 10.1109/TCBB.2014.2372783.
4
Evaluating the performance of time-gated live-cell microscopy with lanthanide probes.
Biophys J. 2015 Jul 21;109(2):240-8. doi: 10.1016/j.bpj.2015.06.028.
5
Localizing and extracting filament distributions from microscopy images.
J Microsc. 2015 Apr;258(1):13-23. doi: 10.1111/jmi.12209. Epub 2014 Dec 30.
6
Lanthanide-based imaging of protein-protein interactions in live cells.
Inorg Chem. 2014 Feb 17;53(4):1839-53. doi: 10.1021/ic4018739. Epub 2013 Oct 21.
7
Localizing and extracting filament distributions from microscopy images.
J Microsc. 2013 Apr;250(1):57-67. doi: 10.1111/jmi.12018.
8
Improved cytoplasmic pH measurements in SNARF-1 stained plant cells by image processing.
Plant Signal Behav. 2010 Apr;5(4):406-8. doi: 10.4161/psb.5.4.10804. Epub 2010 Apr 30.
9
Biosensors for characterizing the dynamics of rho family GTPases in living cells.
Curr Protoc Cell Biol. 2010 Mar;Chapter 14:Unit 14.11.1-26. doi: 10.1002/0471143030.cb1411s46.

本文引用的文献

1
Adaptive wavelet thresholding for image denoising and compression.
IEEE Trans Image Process. 2000;9(9):1532-46. doi: 10.1109/83.862633.
2
Image denoising using scale mixtures of Gaussians in the wavelet domain.
IEEE Trans Image Process. 2003;12(11):1338-51. doi: 10.1109/TIP.2003.818640.
3
A novel 3D wavelet-based filter for visualizing features in noisy biological data.
J Microsc. 2005 Aug;219(Pt 2):43-9. doi: 10.1111/j.1365-2818.2005.01492.x.
4
Ratio imaging instrumentation.
Methods Cell Biol. 2003;72:389-413. doi: 10.1016/s0091-679x(03)72019-6.
5
FRET imaging.
Nat Biotechnol. 2003 Nov;21(11):1387-95. doi: 10.1038/nbt896.
6
Mean and variance of ratio estimators used in fluorescence ratio imaging.
Cytometry. 2000 Apr 1;39(4):300-5. doi: 10.1002/(sici)1097-0320(20000401)39:4<300::aid-cyto8>3.0.co;2-o.
7
Fluorescence ratio imaging microscopy.
Methods Cell Biol. 1989;30:157-92. doi: 10.1016/s0091-679x(08)60979-6.
8
Solid-state imagers for microscopy.
Methods Cell Biol. 1989;29:291-313. doi: 10.1016/s0091-679x(08)60199-5.
9
Fluorescent indicators of ion concentrations.
Methods Cell Biol. 1989;30:127-56. doi: 10.1016/s0091-679x(08)60978-4.
10
Fluorescence ratio imaging of cyclic AMP in single cells.
Nature. 1991 Feb 21;349(6311):694-7. doi: 10.1038/349694a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验