Basu S, Liu C, Rohde G K
Center for Bioimage Informatics, Carnegie Mellon University, Pittsburgh, Pennsylvania, U.S.A.
J Microsc. 2015 Apr;258(1):13-23. doi: 10.1111/jmi.12209. Epub 2014 Dec 30.
Detailed quantitative measurements of biological filament networks represent a crucial step in understanding architecture and structure of cells and tissues, which in turn explain important biological events such as wound healing and cancer metastases. Microscopic images of biological specimens marked for different structural proteins constitute an important source for observing and measuring meaningful parameters of biological networks. Unfortunately, current efforts at quantitative estimation of architecture and orientation of biological filament networks from microscopy images are predominantly limited to visual estimation and indirect experimental inference. Here, we describe a new method for localizing and extracting filament distributions from 2D microscopy images of different modalities. The method combines a filter-based detection of pixels likely to contain a filament with a constrained reverse diffusion-based approach for localizing the filaments centrelines. We show with qualitative and quantitative experiments, using both simulated and real data, that the new method can provide more accurate centreline estimates of filament in comparison to other approaches currently available. In addition, we show the algorithm is more robust with respect to variations in the initial filter-based filament detection step often used. We demonstrate the application of the method in extracting quantitative parameters from confocal microscopy images of actin filaments and atomic force microscopy images of DNA fragments.
对生物细丝网络进行详细的定量测量是理解细胞和组织的结构与构造的关键一步,而这反过来又能解释诸如伤口愈合和癌症转移等重要的生物学事件。针对不同结构蛋白进行标记的生物样本的微观图像,是观察和测量生物网络有意义参数的重要来源。不幸的是,目前从显微镜图像定量估计生物细丝网络的结构和方向的努力主要局限于视觉估计和间接实验推断。在此,我们描述了一种从不同模态的二维显微镜图像中定位和提取细丝分布的新方法。该方法将基于滤波器的可能包含细丝的像素检测与基于约束反向扩散的细丝中心线定位方法相结合。我们通过使用模拟数据和真实数据进行的定性和定量实验表明,与目前可用的其他方法相比,新方法能够提供更精确细丝中心线估计。此外,我们表明该算法对于通常使用的基于滤波器的细丝检测初始步骤中的变化更具鲁棒性。我们展示了该方法在从肌动蛋白细丝的共聚焦显微镜图像和DNA片段的原子力显微镜图像中提取定量参数方面的应用。