Suppr超能文献

利用基于类药物分子构建的定量构效关系模型预测环境化学物质的细胞色素P450谱

Prediction of Cytochrome P450 Profiles of Environmental Chemicals with QSAR Models Built from Drug-like Molecules.

作者信息

Sun Hongmao, Veith Henrike, Xia Menghang, Austin Christopher P, Tice Raymond R, Huang Ruili

机构信息

National Center for Advancing Translational Sciences, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA.

出版信息

Mol Inform. 2012 Nov 1;31(11-12):783-792. doi: 10.1002/minf.201200065. Epub 2012 Oct 11.

Abstract

The human cytochrome P450 (CYP) enzyme family is involved in the biotransformation of many xenobiotics. As part of the U.S. Tox21 Phase I effort, we profiled the CYP activity of approximately three thousand compounds, primarily those of environmental concern, against human CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 isoforms in a quantitative high throughput screening (qHTS) format. In order to evaluate the extent to which computational models built from a drug-like library screened in these five CYP assays under the same conditions can accurately predict the outcome of an environmental compound library, five support vector machines (SVM) models built from over 17,000 drug-like compounds were challenged to predict the CYP activities of the Tox21 compound collection. Although a large fraction of the test compounds fall outside of the applicability domain (AD) of the models, as measured by -nearest neighbor (-NN) similarities, the predictions were largely accurate for CYP1A2, CYP2C9, and CYP3A4 ioszymes with area under the receiver operator characteristic curves (AUC-ROC) ranging between 0.82 and 0.84. The lower predictive power of the CYP2C19 model (AUC-ROC = 0.76) is caused by experimental errors and that of the CYP2D6 model (AUC-ROC = 0.76) can be rescued by rebalancing the training data. Our results demonstrate that decomposing molecules into atom types enhanced the coverage of the AD and that computational models built from drug-like molecules can be used to predict the ability of non-drug like compounds to interact with these CYPs.

摘要

人类细胞色素P450(CYP)酶家族参与多种外源性物质的生物转化。作为美国Tox21一期项目的一部分,我们采用定量高通量筛选(qHTS)方法,对约三千种化合物(主要是环境相关化合物)针对人类CYP1A2、CYP2C19、CYP2C9、CYP2D6和CYP3A4同工型的CYP活性进行了分析。为了评估在相同条件下从这五种CYP检测中筛选的类药物库构建的计算模型能够准确预测环境化合物库结果的程度,我们用从超过17000种类药物化合物构建的五个支持向量机(SVM)模型来预测Tox21化合物集的CYP活性。尽管通过最近邻(-NN)相似度衡量,很大一部分测试化合物落在模型的适用域(AD)之外,但对于CYP1A2、CYP2C9和CYP3A4同工酶,预测在很大程度上是准确的,受试者操作特征曲线下面积(AUC-ROC)在0.82至0.84之间。CYP2C19模型较低的预测能力(AUC-ROC = 0.76)是由实验误差导致的,而CYP2D6模型(AUC-ROC = 0.76)的预测能力可通过重新平衡训练数据得到改善。我们的结果表明,将分子分解为原子类型可扩大适用域的覆盖范围,并且从类药物分子构建的计算模型可用于预测非类药物化合物与这些CYP相互作用的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad1f/3583379/b3c7cc55a1dc/nihms-416498-f0001.jpg

相似文献

引用本文的文献

3
Retro Drug Design: From Target Properties to Molecular Structures.回溯药物设计:从靶点性质到分子结构。
J Chem Inf Model. 2022 Jun 13;62(11):2659-2669. doi: 10.1021/acs.jcim.2c00123. Epub 2022 Jun 2.

本文引用的文献

4
QSAR of cytochrome inhibitors.细胞色素抑制剂的定量构效关系
Expert Opin Drug Metab Toxicol. 2009 Oct;5(10):1245-66. doi: 10.1517/17425250903158940.
6
The toxicity data landscape for environmental chemicals.环境化学品的毒性数据概况。
Environ Health Perspect. 2009 May;117(5):685-95. doi: 10.1289/ehp.0800168. Epub 2008 Dec 22.
7
Toxicity testing in the 21st century: implications for human health risk assessment.21世纪的毒性测试:对人类健康风险评估的影响。
Risk Anal. 2009 Apr;29(4):485-7; discussion 492-7. doi: 10.1111/j.1539-6924.2008.01168.x. Epub 2008 Dec 9.
9
Inhibition and induction of human cytochrome P450 enzymes: current status.人细胞色素P450酶的抑制与诱导:现状
Arch Toxicol. 2008 Oct;82(10):667-715. doi: 10.1007/s00204-008-0332-8. Epub 2008 Jul 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验