Suppr超能文献

加权特征显著性:一种基于结构特征统计富集的简单、可解释的化合物毒性模型。

Weighted feature significance: a simple, interpretable model of compound toxicity based on the statistical enrichment of structural features.

机构信息

Department of Health and Human Services, NIH Chemical Genomics Center, National Institutes of Health, Bethesda, Maryland 20892-3370, USA.

出版信息

Toxicol Sci. 2009 Dec;112(2):385-93. doi: 10.1093/toxsci/kfp231. Epub 2009 Oct 4.

Abstract

In support of the U.S. Tox21 program, we have developed a simple and chemically intuitive model we call weighted feature significance (WFS) to predict the toxicological activity of compounds, based on the statistical enrichment of structural features in toxic compounds. We trained and tested the model on the following: (1) data from quantitative high-throughput screening cytotoxicity and caspase activation assays conducted at the National Institutes of Health Chemical Genomics Center, (2) data from Salmonella typhimurium reverse mutagenicity assays conducted by the U.S. National Toxicology Program, and (3) hepatotoxicity data published in the Registry of Toxic Effects of Chemical Substances. Enrichments of structural features in toxic compounds are evaluated for their statistical significance and compiled into a simple additive model of toxicity and then used to score new compounds for potential toxicity. The predictive power of the model for cytotoxicity was validated using an independent set of compounds from the U.S. Environmental Protection Agency tested also at the National Institutes of Health Chemical Genomics Center. We compared the performance of our WFS approach with classical classification methods such as Naive Bayesian clustering and support vector machines. In most test cases, WFS showed similar or slightly better predictive power, especially in the prediction of hepatotoxic compounds, where WFS appeared to have the best performance among the three methods. The new algorithm has the important advantages of simplicity, power, interpretability, and ease of implementation.

摘要

为支持美国 Tox21 计划,我们开发了一种简单且具有化学直观性的模型,我们称之为加权特征显著性(WFS),用于根据毒性化合物中结构特征的统计富集来预测化合物的毒理学活性。我们在以下方面对模型进行了训练和测试:(1)在国立卫生研究院化学基因组学中心进行的定量高通量筛选细胞毒性和半胱天冬酶激活测定的数据集,(2)由美国国家毒理学计划进行的鼠伤寒沙门氏菌回复突变性测定的数据集,以及(3)在《化学物质毒性效应登记册》中发表的肝毒性数据。毒性化合物中结构特征的富集度针对其统计学显著性进行评估,并被编译成一个简单的毒性加和模型,然后用于对新化合物进行潜在毒性评分。该模型对细胞毒性的预测能力通过使用来自美国环境保护署的独立化合物集进行验证,这些化合物也在国立卫生研究院化学基因组学中心进行了测试。我们将我们的 WFS 方法的性能与经典分类方法(如朴素贝叶斯聚类和支持向量机)进行了比较。在大多数测试案例中,WFS 显示出相似或稍好的预测能力,特别是在预测肝毒性化合物方面,WFS 似乎在这三种方法中表现最佳。新算法具有简单、强大、可解释性和易于实现的重要优势。

相似文献

3
Improving the human hazard characterization of chemicals: a Tox21 update.改进化学物质的人类危害特征描述:Tox21 更新。
Environ Health Perspect. 2013 Jul;121(7):756-65. doi: 10.1289/ehp.1205784. Epub 2013 Apr 19.
6
Toxicity-indicating structural patterns.毒性指示结构模式。
J Chem Inf Model. 2006 Mar-Apr;46(2):536-44. doi: 10.1021/ci050358k.
7
The Tox21 10K Compound Library: Collaborative Chemistry Advancing Toxicology.Tox21 十库化合物库:协作化学推动毒理学发展。
Chem Res Toxicol. 2021 Feb 15;34(2):189-216. doi: 10.1021/acs.chemrestox.0c00264. Epub 2020 Nov 3.

引用本文的文献

6
Modeling to optimize terminal stem cell differentiation.建模以优化终末干细胞分化。
Scientifica (Cairo). 2013;2013:574354. doi: 10.1155/2013/574354. Epub 2013 Feb 11.
9
Improving the human hazard characterization of chemicals: a Tox21 update.改进化学物质的人类危害特征描述:Tox21 更新。
Environ Health Perspect. 2013 Jul;121(7):756-65. doi: 10.1289/ehp.1205784. Epub 2013 Apr 19.

本文引用的文献

3
Toxicology. Transforming environmental health protection.毒理学。转变环境卫生保护。
Science. 2008 Feb 15;319(5865):906-7. doi: 10.1126/science.1154619.
4
Computer-assisted methods in chemical toxicity prediction.化学毒性预测中的计算机辅助方法。
Mini Rev Med Chem. 2007 May;7(5):499-507. doi: 10.2174/138955707780619554.
5
Applying mechanisms of chemical toxicity to predict drug safety.应用化学毒性机制预测药物安全性。
Chem Res Toxicol. 2007 Mar;20(3):344-69. doi: 10.1021/tx600260a. Epub 2007 Feb 16.
6
Assessing the data quality in predictive toxicology using a panel of cell lines and cytotoxicity assays.
Anal Biochem. 2007 Mar 15;362(2):221-8. doi: 10.1016/j.ab.2006.12.038. Epub 2006 Dec 28.
9
Toxicity-indicating structural patterns.毒性指示结构模式。
J Chem Inf Model. 2006 Mar-Apr;46(2):536-44. doi: 10.1021/ci050358k.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验