Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, 147 West Changle Rd, Xian, 710032, China.
Basic Res Cardiol. 2013 May;108(3):329. doi: 10.1007/s00395-013-0329-1. Epub 2013 Mar 5.
Impaired mitochondrial biogenesis causes skeletal muscle damage in diabetes. However, whether and how mitochondrial biogenesis is impaired in the diabetic heart remains largely unknown. Whether adiponectin (APN), a potent cardioprotective molecule, regulates cardiac mitochondrial function has also not been previously investigated. In this study, electron microscopy revealed significant mitochondrial disorders in ob/ob cardiomyocytes, including mitochondrial swelling and cristae disorientation and breakage. Moreover, mitochondrial biogenesis of ob/ob cardiomyocytes is significantly impaired, as evidenced by reduced Ppargc-1a/Nrf-1/Tfam mRNA levels, mitochondrial DNA content, ATP content, citrate synthase activity, complexes I/III/V activity, AMPK phosphorylation, and increased PGC-1α acetylation. Since APN is an upstream activator of AMPK and APN plasma levels are significantly reduced in ob/ob mice, we further tested the hypothesis that reduced APN in ob/ob mice is causatively related to mitochondrial biogenesis impairment. One week of APN treatment of ob/ob mice activated AMPK, reduced PGC-1α acetylation, increased mitochondrial biogenesis, and attenuated mitochondrial disorders. In contrast, knocking out APN inhibited AMPK-PGC-1α signaling and impaired both mitochondrial biogenesis and function. The ob/ob mice exhibited lower survival rates and exacerbated myocardial injury after MI, when compared to controls. APN supplementation improved mitochondrial biogenesis and attenuated MI injury, an effect that was almost completely abrogated by the AMPK inhibitor compound C. In high glucose/high fat treated neonatal rat ventricular myocytes, siRNA-mediated knockdown of PGC-1α blocked gAd-enhanced mitochondrial biogenesis and function and attenuated protection against hypoxia/reoxygenation injury. In conclusion, hypoadiponectinemia impaired AMPK-PGC-1α signaling, resulting in dysfunctional mitochondrial biogenesis that constitutes a novel mechanism for rendering diabetic hearts more vulnerable to enhanced MI injury.
线粒体生物发生受损导致糖尿病骨骼肌损伤。然而,糖尿病心脏中线粒体生物发生是否以及如何受损在很大程度上尚不清楚。脂联素(APN),一种有效的心脏保护分子,是否调节心脏线粒体功能以前也没有被研究过。在这项研究中,电子显微镜显示 ob/ob 心肌细胞存在明显的线粒体紊乱,包括线粒体肿胀、嵴定向和断裂。此外,ob/ob 心肌细胞的线粒体生物发生明显受损,表现在 Ppargc-1a/Nrf-1/Tfam mRNA 水平、线粒体 DNA 含量、ATP 含量、柠檬酸合酶活性、复合物 I/III/V 活性、AMPK 磷酸化和 PGC-1α 乙酰化增加。由于 APN 是 AMPK 的上游激活剂,并且 ob/ob 小鼠中的 APN 血浆水平显著降低,因此我们进一步测试了假设,即 ob/ob 小鼠中降低的 APN 与线粒体生物发生受损有关。ob/ob 小鼠接受 APN 治疗一周可激活 AMPK、降低 PGC-1α 乙酰化、增加线粒体生物发生并减轻线粒体紊乱。相反,敲除 APN 抑制 AMPK-PGC-1α 信号传导并损害线粒体生物发生和功能。与对照组相比,ob/ob 小鼠在 MI 后表现出较低的存活率和加重的心肌损伤。与对照组相比,APN 补充可改善线粒体生物发生并减轻 MI 损伤,而 AMPK 抑制剂化合物 C 几乎完全阻断了这一作用。在高糖/高脂处理的新生大鼠心室肌细胞中,PGC-1α 的 siRNA 介导的敲低阻断了 gAd 增强的线粒体生物发生和功能,并减轻了对缺氧/复氧损伤的保护作用。总之,低脂联素血症损害了 AMPK-PGC-1α 信号传导,导致功能失调的线粒体生物发生,这构成了使糖尿病心脏更容易受到增强的 MI 损伤的新机制。