Bizzarri Federico, Brambilla Angelo, Gajani Giancarlo Storti
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, p.za. Leonardo da Vinci, n. 32, 20133, Milano, Italy,
J Comput Neurosci. 2013 Oct;35(2):201-12. doi: 10.1007/s10827-013-0448-6. Epub 2013 Mar 6.
Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for continuous time dynamical systems is straightforward whenever they are ruled by vector fields that are sufficiently smooth to admit a variational model. Hybrid neurons do not belong to this wide class of systems since they are intrinsically non-smooth owing to the impact and sometimes switching model used to describe the integrate-and-fire (I&F) mechanism. In this paper we show how a variational model can be defined also for this class of neurons by resorting to saltation matrices. This extension allows the computation of Lyapunov exponent spectrum of hybrid neurons and of networks made up of them through a standard numerical approach even in the case of neurons firing synchronously.
李雅普诺夫指数是刻画动力系统长期行为的一种基本且强大的工具。对于连续时间动力系统,只要它们由足够光滑以允许变分模型的向量场控制,李雅普诺夫指数的计算就很直接。混合神经元不属于这类广泛的系统,因为由于用于描述积分发放(I&F)机制的冲击模型以及有时的切换模型,它们本质上是不光滑的。在本文中,我们展示了如何通过跳跃矩阵为这类神经元定义一个变分模型。这种扩展使得即使在神经元同步发放的情况下,也能够通过标准数值方法计算混合神经元及其组成网络的李雅普诺夫指数谱。