Zhang Jiwei, Shao Yuxiu, Rangan Aaditya V, Tao Louis
School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China.
Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan, 430072, China.
J Comput Neurosci. 2019 Apr;46(2):211-232. doi: 10.1007/s10827-019-00712-w. Epub 2019 Feb 16.
Homogeneously structured, fluctuation-driven networks of spiking neurons can exhibit a wide variety of dynamical behaviors, ranging from homogeneity to synchrony. We extend our partitioned-ensemble average (PEA) formalism proposed in Zhang et al. (Journal of Computational Neuroscience, 37(1), 81-104, 2014a) to systematically coarse grain the heterogeneous dynamics of strongly coupled, conductance-based integrate-and-fire neuronal networks. The population dynamics models derived here successfully capture the so-called multiple-firing events (MFEs), which emerge naturally in fluctuation-driven networks of strongly coupled neurons. Although these MFEs likely play a crucial role in the generation of the neuronal avalanches observed in vitro and in vivo, the mechanisms underlying these MFEs cannot easily be understood using standard population dynamic models. Using our PEA formalism, we systematically generate a sequence of model reductions, going from Master equations, to Fokker-Planck equations, and finally, to an augmented system of ordinary differential equations. Furthermore, we show that these reductions can faithfully describe the heterogeneous dynamic regimes underlying the generation of MFEs in strongly coupled conductance-based integrate-and-fire neuronal networks.
结构均匀、由波动驱动的脉冲神经元网络可以展现出各种各样的动力学行为,从均匀性到同步性。我们扩展了在Zhang等人(《计算神经科学杂志》,37(1),81 - 104,2014a)中提出的分区系综平均(PEA)形式体系,以系统地对强耦合、基于电导的积分发放神经元网络的异质动力学进行粗粒化。这里推导的群体动力学模型成功地捕捉到了所谓的多次发放事件(MFEs),这些事件在强耦合神经元的波动驱动网络中自然出现。尽管这些MFEs可能在体外和体内观察到的神经元雪崩的产生中起着关键作用,但使用标准的群体动力学模型很难理解这些MFEs背后的机制。使用我们的PEA形式体系,我们系统地生成了一系列模型简化,从主方程到福克 - 普朗克方程,最后到一个扩充的常微分方程组。此外,我们表明这些简化能够忠实地描述在强耦合、基于电导的积分发放神经元网络中产生MFEs的异质动力学状态。