Suppr超能文献

用于荧光显微镜机器人化的计算平台(一):基于高内涵图像的细胞周期分析。

A computational platform for robotized fluorescence microscopy (I): high-content image-based cell-cycle analysis.

机构信息

Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus for Oncogenomics, Milano 20139, Italy.

出版信息

Cytometry A. 2013 Apr;83(4):333-43. doi: 10.1002/cyto.a.22266. Epub 2013 Mar 5.

Abstract

Hardware automation and software development have allowed a dramatic increase of throughput in both acquisition and analysis of images by associating an optimized statistical significance with fluorescence microscopy. Despite the numerous common points between fluorescence microscopy and flow cytometry (FCM), the enormous amount of applications developed for the latter have found relatively low space among the modern high-resolution imaging techniques. With the aim to fulfill this gap, we developed a novel computational platform named A.M.I.CO. (Automated Microscopy for Image-Cytometry) for the quantitative analysis of images from widefield and confocal robotized microscopes. Thanks to the setting up of both staining protocols and analysis procedures, we were able to recapitulate many FCM assays. In particular, we focused on the measurement of DNA content and the reconstruction of cell-cycle profiles with optimal parameters. Standard automated microscopes were employed at the highest optical resolution (200 nm), and white-light sources made it possible to perform an efficient multiparameter analysis. DNA- and protein-content measurements were complemented with image-derived information on their intracellular spatial distribution. Notably, the developed tools create a direct link between image-analysis and acquisition. It is therefore possible to isolate target populations according to a definite quantitative profile, and to relocate physically them for diffraction-limited data acquisition. Thanks to its flexibility and analysis-driven acquisition, A.M.I.CO. can integrate flow, image-stream and laser-scanning cytometry analysis, providing high-resolution intracellular analysis with a previously unreached statistical relevance.

摘要

硬件自动化和软件开发通过将优化的统计学意义与荧光显微镜相关联,允许在图像的获取和分析方面实现吞吐量的显著增加。尽管荧光显微镜和流式细胞术(FCM)之间有许多共同点,但为后者开发的大量应用在现代高分辨率成像技术中相对较少。为了填补这一空白,我们开发了一种名为 A.M.I.CO.(Image-Cytometry 的自动化显微镜)的新型计算平台,用于对宽场和共聚焦机器人显微镜的图像进行定量分析。通过建立染色方案和分析程序,我们能够重现许多 FCM 测定。特别是,我们专注于使用最佳参数测量 DNA 含量和重建细胞周期谱。标准自动化显微镜以最高的光学分辨率(200nm)运行,白光光源使其能够进行有效的多参数分析。DNA 和蛋白质含量的测量补充了有关其细胞内空间分布的图像衍生信息。值得注意的是,开发的工具在图像分析和采集之间建立了直接联系。因此,可以根据特定的定量分布来分离目标群体,并为具有衍射极限的数据采集而物理上定位它们。由于其灵活性和分析驱动的采集,A.M.I.CO. 可以集成流式、图像流和激光扫描细胞术分析,提供以前无法达到的统计相关性的高分辨率细胞内分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验