School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
Mol Med. 2021 Nov 27;27(1):149. doi: 10.1186/s10020-021-00404-1.
Thrombocytopenia is one of the most common hematological disease that can be life-threatening caused by bleeding complications. However, the treatment options for thrombocytopenia remain limited.
In this study, giemsa staining, phalloidin staining, immunofluorescence and flow cytometry were used to identify the effects of 3,3'-di-O-methylellagic acid 4'-glucoside (DMAG), a natural ellagic acid derived from Sanguisorba officinalis L. (SOL) on megakaryocyte differentiation in HEL cells. Then, thrombocytopenia mice model was constructed by X-ray irradiation to evaluate the therapeutic action of DMAG on thrombocytopenia. Furthermore, the effects of DMAG on platelet function were evaluated by tail bleeding time, platelet aggregation and platelet adhesion assays. Next, network pharmacology approaches were carried out to identify the targets of DMAG. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to elucidate the underling mechanism of DMAG against thrombocytopenia. Finally, molecular docking simulation, molecular dynamics simulation and western blot analysis were used to explore the relationship between DAMG with its targets.
DMAG significantly promoted megakaryocyte differentiation of HEL cells. DMAG administration accelerated platelet recovery and megakaryopoiesis, shortened tail bleeding time, strengthened platelet aggregation and adhesion in thrombocytopenia mice. Network pharmacology revealed that ITGA2B, ITGB3, VWF, PLEK, TLR2, BCL2, BCL2L1 and TNF were the core targets of DMAG. GO and KEGG pathway enrichment analyses suggested that the core targets of DMAG were enriched in PI3K-Akt signaling pathway, hematopoietic cell lineage, ECM-receptor interaction and platelet activation. Molecular docking simulation and molecular dynamics simulation further indicated that ITGA2B, ITGB3, PLEK and TLR2 displayed strong binding ability with DMAG. Finally, western blot analysis evidenced that DMAG up-regulated the expression of ITGA2B, ITGB3, VWF, p-Akt and PLEK.
DMAG plays a critical role in promoting megakaryocytes differentiation and platelets production and might be a promising medicine for the treatment of thrombocytopenia.
血小板减少症是最常见的血液病之一,可因出血并发症而危及生命。然而,血小板减少症的治疗选择仍然有限。
在这项研究中,吉姆萨染色、鬼笔环肽染色、免疫荧光和流式细胞术用于鉴定来自地榆(Sanguisorba officinalis L.)的天然鞣花酸 3,3'-二-O-甲基鞣花酸 4'-葡萄糖苷(DMAG)对 HEL 细胞巨核细胞分化的影响。然后,通过 X 射线照射构建血小板减少症小鼠模型,以评估 DMAG 对血小板减少症的治疗作用。此外,通过尾出血时间、血小板聚集和血小板黏附试验评估 DMAG 对血小板功能的影响。接下来,采用网络药理学方法鉴定 DMAG 的靶点。进行基因本体论(GO)和京都基因与基因组百科全书(KEGG)通路富集分析,以阐明 DMAG 对抗血小板减少症的潜在机制。最后,采用分子对接模拟、分子动力学模拟和 Western blot 分析探讨 DAMG 与其靶点的关系。
DMAG 显著促进 HEL 细胞巨核细胞分化。DMAG 给药加速血小板恢复和巨核细胞生成,缩短血小板减少症小鼠的尾出血时间,增强血小板聚集和黏附。网络药理学显示,ITGA2B、ITGB3、VWF、PLEK、TLR2、BCL2、BCL2L1 和 TNF 是 DMAG 的核心靶点。GO 和 KEGG 通路富集分析表明,DMAG 的核心靶点富集于 PI3K-Akt 信号通路、造血细胞谱系、细胞外基质受体相互作用和血小板激活。分子对接模拟和分子动力学模拟进一步表明,ITGA2B、ITGB3、PLEK 和 TLR2 与 DMAG 具有较强的结合能力。最后,Western blot 分析表明,DMAG 上调了 ITGA2B、ITGB3、VWF、p-Akt 和 PLEK 的表达。
DMAG 在促进巨核细胞分化和血小板生成方面发挥着重要作用,可能成为治疗血小板减少症的有前途的药物。