Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, 325027, PR China.
Nanoscale. 2013 Apr 21;5(8):3283-8. doi: 10.1039/c3nr34003a. Epub 2013 Mar 8.
Despite the good progress in developing doped carbon catalysts for oxygen-reduction reaction (ORR), the current metal-free carbon catalysts are still far from satisfactory for large-scale applications of fuel cell. Developing new metal free doped carbon materials with abundance active sites as well as excellent electron transfer and reactant transport rate towards ORR may be a potential solution. Herein, we develop a novel three-dimensional (3D) sulfur-nitrogen co-doped carbon foams (S-N-CF) with hierarchical pore structures, using a convenient, economical, and scalable method. The experimental results have demonstrated that the obtained 3D S-N-CF exhibited better catalytic activity, longer-term stability and higher methanol tolerance than a commercial Pt/C catalyst. Such excellent performances may be attributed to the synergistic effect, which includes high catalytic sites for ORR provided by high S-N heteroatom loading, excellent reactant transport caused by hierarchical pore structures and high electron transfer rate provided by 3D continuous networks. Our results not only develop a new type of catalysts with excellent electrocatalytic performance by a commercially valid route, but also provide useful information for further clarification of the relationship between the microstructures of metal-free carbon materials and catalyst properties for ORR. More importantly, the idea to design hierarchical pore structures could be applied to other catalytic materials and serve as a general strategy for improving the activity of various ORR catalysts.
尽管在开发用于氧还原反应(ORR)的掺杂碳催化剂方面取得了良好的进展,但目前的无金属碳催化剂在燃料电池的大规模应用中仍远远不能令人满意。开发具有丰富活性位点以及优异电子转移和反应物传输速率的新型无金属掺杂碳材料可能是一种潜在的解决方案。在此,我们使用一种简便、经济且可扩展的方法,开发了一种具有分级孔结构的新型三维(3D)硫-氮共掺杂碳泡沫(S-N-CF)。实验结果表明,所得到的 3D S-N-CF 表现出比商业 Pt/C 催化剂更好的催化活性、更长的长期稳定性和更高的甲醇耐受性。这种优异的性能可能归因于协同效应,包括高 S-N 杂原子负载提供的高 ORR 催化活性位点、分级孔结构带来的优异反应物传输以及 3D 连续网络提供的高电子转移速率。我们的研究结果不仅通过商业上有效的途径开发了具有优异电催化性能的新型催化剂,而且为进一步阐明无金属碳材料的微观结构与 ORR 催化剂性能之间的关系提供了有用的信息。更重要的是,设计分级孔结构的思路可以应用于其他催化材料,并作为提高各种 ORR 催化剂活性的一般策略。