杂原子掺杂的无金属碳纳米材料作为潜在的电催化剂
Heteroatom-Doped Metal-Free Carbon Nanomaterials as Potential Electrocatalysts.
作者信息
Chattopadhyay Jayeeta, Pathak Tara Sankar, Pak Daewon
机构信息
Chemistry Department, Amity University Jharkhand, Ranchi 834002, India.
Department of Science and Humanities, Surendra Institute of Engineering and Management, Siliguri, Darjeeling 734009, India.
出版信息
Molecules. 2022 Jan 20;27(3):670. doi: 10.3390/molecules27030670.
In recent years, heteroatom-incorporated specially structured metal-free carbon nanomaterials have drawn huge attention among researchers. In comparison to the undoped carbon nanomaterials, heteroatoms such as nitrogen-, sulphur-, boron-, phosphorous-, etc., incorporated nanomaterials have become well-accepted as potential electrocatalysts in water splitting, supercapacitors and dye-sensitized solar cells. This review puts special emphasis on the most popular synthetic strategies of heteroatom-doped and co-doped metal-free carbon nanomaterials, viz., chemical vapor deposition, pyrolysis, solvothermal process, etc., utilized in last two decades. These specially structured nanomaterials' extensive applications as potential electrocatalysts are taken into consideration in this article. Their comparative enhancement of electrocatalytic performance with incorporation of heteroatoms has also been discussed.
近年来,杂原子掺杂的特殊结构无金属碳纳米材料在研究人员中引起了极大关注。与未掺杂的碳纳米材料相比,诸如氮、硫、硼、磷等杂原子掺杂的纳米材料已被广泛认可为析氢反应、超级电容器和染料敏化太阳能电池等领域潜在的电催化剂。本文特别强调了近二十年来用于制备杂原子掺杂及共掺杂无金属碳纳米材料的最常用合成策略,即化学气相沉积法、热解法、溶剂热法等。本文还考虑了这些特殊结构纳米材料作为潜在电催化剂的广泛应用。同时也讨论了杂原子掺杂对其电催化性能的相对增强作用。
相似文献
Molecules. 2022-1-20
Chem Rec. 2024-1
Front Chem. 2019-11-12
Dalton Trans. 2022-8-2
Materials (Basel). 2023-1-29
引用本文的文献
本文引用的文献
Chemistry. 2020-12-1
Materials (Basel). 2020-3-17
Chem Rev. 2020-7-22
Chem Rev. 2019-10-28
Nanomaterials (Basel). 2018-9-7