Leal Cecília, Ewert Kai K, Bouxsein Nathan F, Shirazi Rahau S, Li Youli, Safinya Cyrus R
Physics, Materials, and Molecular, Cellular & Developmental Biology Departments, University of California, Santa Barbara, California 93106, United States.
Soft Matter. 2013 Jan 21;9(3):795-804. doi: 10.1039/C2SM27018H. Epub 2012 Nov 8.
Lyotropic phases of amphiphiles are a prototypical example of self-assemblies. Their structure is generally determined by amphiphile shape and their phase transitions are primarily governed by composition. In this paper, we demonstrate a new paradigm for membrane shape control where the electrostatic coupling of charged membranes to short DNA (sDNA), with tunable temperature-dependent end-to-end stacking interactions, enables switching between the inverted gyroid cubic structure (Q) and the inverted hexagonal phase (H). We investigated the structural shape transitions induced in the Q phase upon complexation with a series of sDNAs (5, 11, 24, and 48 bp) with three types of end structure ("sticky" adenine (A)-thymine (T) (dAdT) overhangs, no overhang (blunt), and "nonsticky" dTdT overhangs) using synchrotron small-angle X-ray scattering. Very short 5 bp sDNA with dAdT overhangs and blunt ends induce coexistence of the Q and the H phase, with the fraction of Q increasing with temperature. Phase coexistence for blunt 5 bp sDNA is observed from 27 °C to about 65 °C, where the H phase disappears and the temperature dependence of the lattice spacing of the Q phase indicates that the sDNA duplexes melt into single strands. The only other sDNA for which melting is observed is 5 bp sDNA with dTdT overhangs, which forms the Q phase throughout the studied range of temperature (27 °C to 85.2 °C). The longer 11 bp sDNA forms coexisting Q and H phases (with the fraction of Q again increasing with temperature) only for "nonsticky" dTdT overhangs, while dAdT overhangs and blunt ends exclusively template the H phase. For 24 and 48 bp sDNAs the H phase replaces the Q phase at all investigated temperatures, independent of sDNA end structure. Our work demonstrates how the combined effects of sDNA length and end structure (which determine the temperature-dependent stacking length) tune the phase behavior of the complexes. These findings are consistent with the hypothesis that sDNAs and sDNA stacks with lengths comparable to or larger than the cubic unit cell length disfavor the highly curved channels present in the Q phase, thus driving the Q-to-H phase transition. As the temperature is increased, the breaking of stacks due to thermal fluctuations restores increasing percentages of the Q phase.
两亲分子的溶致相是自组装的典型例子。它们的结构通常由两亲分子的形状决定,其相变主要由组成决定。在本文中,我们展示了一种控制膜形状的新范式,即带电膜与短DNA(sDNA)的静电耦合,通过可调的温度依赖性端对端堆积相互作用,能够在反转的螺旋立方结构(Q)和反转的六方相(H)之间切换。我们使用同步加速器小角X射线散射研究了与一系列具有三种末端结构(“粘性”腺嘌呤(A)-胸腺嘧啶(T)(dAdT)突出端、无突出端(平头)和“非粘性”dTdT突出端)的sDNA(5、11、24和48碱基对)络合时在Q相中诱导的结构形状转变。具有dAdT突出端和平头末端的非常短的5碱基对sDNA诱导Q相和H相共存,Q相的比例随温度升高而增加。平头5碱基对sDNA的相共存温度范围为27℃至约65℃,在此温度范围内H相消失,Q相晶格间距的温度依赖性表明sDNA双链体熔化为单链。观察到发生熔解的唯一其他sDNA是具有dTdT突出端的5碱基对sDNA,它在整个研究温度范围(27℃至85.2℃)内形成Q相。仅对于“非粘性”dTdT突出端,较长的11碱基对sDNA形成共存的Q相和H相(Q相的比例再次随温度增加),而dAdT突出端和平头末端仅形成H相模板。对于24和48碱基对的sDNA,在所有研究温度下H相取代Q相,与sDNA末端结构无关。我们的工作展示了sDNA长度和末端结构(决定温度依赖性堆积长度)的综合效应如何调节复合物的相行为。这些发现与以下假设一致:长度与立方晶胞长度相当或更大的sDNA和sDNA堆叠不利于Q相中存在的高度弯曲通道,从而驱动Q相向H相的转变。随着温度升高,由于热涨落导致的堆叠断裂使Q相的比例恢复增加。