Department of Bioengineering, California Institute of Technology, Pasadena, California 91125, USA.
Nat Chem. 2011 Jul 10;3(8):620-7. doi: 10.1038/nchem.1070.
From ligand-receptor binding to DNA hybridization, molecular recognition plays a central role in biology. Over the past several decades, chemists have successfully reproduced the exquisite specificity of biomolecular interactions. However, engineering multiple specific interactions in synthetic systems remains difficult. DNA retains its position as the best medium with which to create orthogonal, isoenergetic interactions, based on the complementarity of Watson-Crick binding. Here we show that DNA can be used to create diverse bonds using an entirely different principle: the geometric arrangement of blunt-end stacking interactions. We show that both binary codes and shape complementarity can serve as a basis for such stacking bonds, and explore their specificity, thermodynamics and binding rules. Orthogonal stacking bonds were used to connect five distinct DNA origami. This work, which demonstrates how a single attractive interaction can be developed to create diverse bonds, may guide strategies for molecular recognition in systems beyond DNA nanostructures.
从配体-受体结合到 DNA 杂交,分子识别在生物学中起着核心作用。在过去的几十年中,化学家已经成功地复制了生物分子相互作用的高度特异性。然而,在合成系统中工程化多个特定相互作用仍然很困难。基于沃森-克里克结合的互补性,DNA 仍然是创造正交、等能量相互作用的最佳介质。在这里,我们展示了 DNA 可以使用完全不同的原理来创建多种键:钝端堆积相互作用的几何排列。我们表明,二进制代码和形状互补性都可以作为这种堆积键的基础,并探索它们的特异性、热力学和结合规则。正交堆积键用于连接五个不同的 DNA 折纸。这项工作展示了如何开发单一的吸引力相互作用来创建多种键,这可能为超越 DNA 纳米结构的系统中的分子识别策略提供指导。