Department of Physics, Adam Mickiewicz University , ul. Umultowska 85, 61-614 Poznań, Poland.
J Phys Chem B. 2013 Sep 26;117(38):11112-23. doi: 10.1021/jp4011235. Epub 2013 Mar 27.
Time-resolved spectroscopic studies of recombination of the P(+)HA(-) radical pair in photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides give an opportunity to study protein dynamics triggered by light and occurring over the lifetime of P(+)HA(-). The state P(+)HA(-) is formed after the ultrafast light-induced electron transfer from the primary donor pair of bacteriochlorophylls (P) to the acceptor bacteriopheophytin (HA). In order to increase the lifetime of this state, and thus increase the temporal window for the examination of protein dynamics, it is possible to block forward electron transfer from HA(-) to the secondary electron acceptor QA. In this contribution, the dynamics of P(+)HA(-) recombination were compared at a range of temperatures from 77 K to room temperature, electron transfer from HA(-) to QA being blocked either by prereduction of QA or by genetic removal of QA. The observed P(+)HA(-) charge recombination was significantly slower in the QA-deficient RCs, and in both types of complexes, lowering the temperature from RT to 77 K led to a slowing of charge recombination. The effects are explained in the frame of a model in which charge recombination occurs via competing pathways, one of which is thermally activated and includes transient formation of a higher-energy state, P(+)BA(-). An internal electrostatic field supplied by the negative charge on QA increases the free energy levels of the state P(+)HA(-), thus decreasing its energetic distance to the state P(+)BA(-). In addition, the dielectric response of the protein environment to the appearance of the state P(+)HA(-) is accelerated from ∼50-100 ns in the QA-deficient mutant RCs to ∼1-16 ns in WT RCs with a negatively charged QA(-). In both cases, the temperature dependence of the protein dynamics is weak.
时间分辨光谱研究表明,在来自球形红杆菌的光合反应中心(RC)中,P(+)HA(-)自由基对的复合与光触发的蛋白质动力学有关,并且这种动力学发生在 P(+)HA(-)的寿命内。P(+)HA(-)态是在细菌叶绿素(P)的初级供体对到受体细菌叶绿素(HA)的超快光诱导电子转移后形成的。为了增加该状态的寿命,从而增加检查蛋白质动力学的时间窗口,可以阻断从 HA(-)到次级电子受体 QA 的正向电子转移。在本研究中,比较了在 77 K 到室温的一系列温度下,通过预还原 QA 或遗传去除 QA 来阻断 HA(-)向 QA 的电子转移时,P(+)HA(-)复合的动力学。在 QA 缺乏的 RC 中,观察到的 P(+)HA(-)电荷复合明显较慢,在两种类型的复合物中,从 RT 降低到 77 K 会导致电荷复合变慢。这些效应可以用一个模型来解释,该模型认为电荷复合通过竞争途径发生,其中一种途径是热激活的,包括瞬态形成更高能量的状态 P(+)BA(-)。QA 上的负电荷提供的内部静电场增加了状态 P(+)HA(-)的自由能水平,从而降低了其与状态 P(+)BA(-)的能量距离。此外,在 QA 缺乏突变体 RC 中,蛋白环境对状态 P(+)HA(-)出现的介电响应从约 50-100 ns 加速到在带有负电荷 QA(-)的 WT RC 中的约 1-16 ns。在这两种情况下,蛋白质动力学的温度依赖性都很弱。