The Biodesign Institute at Arizona State University, ‡Department of Chemistry and Biochemistry, and §Department of Physics, Arizona State University , Tempe, Arizona 85287-5201, United States.
J Phys Chem B. 2013 Sep 26;117(38):11383-90. doi: 10.1021/jp4037843. Epub 2013 Jul 10.
In photosynthetic reaction centers, the electric field generated by light-induced charge separation produces electrochromic shifts in the transitions of reaction center pigments. The extent of this Stark shift indirectly reflects the effective field strength at a particular cofactor in the complex. The dynamics of the effective field strength near the two monomeric bacteriochlorophylls (BA and BB) in purple photosynthetic bacterial reaction centers has been explored near physiological temperature by monitoring the time-dependent Stark shift during charge separation (dynamic Stark shift). This dynamic Stark shift was determined through analysis of femtosecond time-resolved absorbance change spectra recorded in wild type reaction centers and in four mutants at position M210. In both wild type and the mutants, the kinetics of the dynamic Stark shift differ from those of electron transfer, though not in the same way. In wild type, the initial electron transfer and the increase in the effective field strength near the active-side monomer bacteriochlorophyll (BA) occur in synchrony, but the two signals diverge on the time scale of electron transfer to the quinone. In contrast, when tyrosine is replaced by aspartic acid at M210, the kinetics of the BA Stark shift and the initial electron transfer differ, but transfer to the quinone coincides with the decay of the Stark shift. This is interpreted in terms of differences in the dynamics of the local dielectric environment between the mutants and the wild type. In wild type, comparison of the Stark shifts associated with BA and BB on the two quasi-symmetric halves of the reaction center structure confirm that the effective dielectric constants near these cofactors are quite different when the reaction center is in the state P(+)QA(-), as previously determined by Steffen et al. at 1.5 K (Steffen, M. A.; et al. Science 1994, 264, 810-816). However, it is not possible to determine from static, low-temperature measurments if the difference in the effective dielectric constant between the two sides of the reaction center is manifest on the time scale of initial electron transfer. By comparing directly the Stark shift dynamics of the ground-state spectra of the two monomer bacteriochlorophylls, it is evident that there is, in fact, a large dielectric difference between protein environments of the two quasi-symmetric electron-transfer branches on the time scale of initial electron transfer and that the effective dielectric constant in the region continues to evolve on a time scale of hundreds of picoseconds.
在光合作用反应中心,光诱导电荷分离产生的电场会导致反应中心色素的跃迁产生电致变色位移。这种斯塔克位移的程度间接反映了复合物中特定辅助因子的有效场强。在生理温度下,通过监测电荷分离过程中斯塔克位移的时间依赖性(动态斯塔克位移),研究了紫色光合细菌反应中心中两个单体细菌叶绿素(BA 和 BB)附近有效场强的动力学。通过分析野生型反应中心和四个 M210 位置突变体的飞秒时间分辨吸收变化光谱,确定了这种动态斯塔克位移。在野生型和突变体中,尽管方式不同,但动态斯塔克位移的动力学与电子转移的动力学不同。在野生型中,初始电子转移和活性侧单体细菌叶绿素(BA)附近有效场强的增加是同步的,但在电子转移到醌的时间尺度上,这两个信号会发散。相比之下,当 M210 处的酪氨酸被天冬氨酸取代时,BA 斯塔克位移和初始电子转移的动力学不同,但向醌的转移与斯塔克位移的衰减同时发生。这可以用突变体和野生型之间局部介电环境动力学的差异来解释。在野生型中,比较反应中心结构两个准对称半部分中与 BA 和 BB 相关的斯塔克位移,证实了当反应中心处于 P(+)QA(-)态时,这些辅助因子附近的有效介电常数非常不同,正如 Steffen 等人在 1.5 K 时所确定的那样(Steffen,M.A.;等人,科学 1994,264,810-816)。然而,从静态、低温测量中不可能确定反应中心两侧的有效介电常数差异是否在初始电子转移的时间尺度上显现。通过直接比较两个单体细菌叶绿素的基态光谱的斯塔克位移动力学,可以明显看出,在初始电子转移的时间尺度上,两个准对称电子转移分支的蛋白质环境之间实际上存在很大的介电差异,并且该有效介电常数在区域继续在数百皮秒的时间尺度上演变。