Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
Philos Trans R Soc Lond B Biol Sci. 2013 Mar 11;368(1616):20120320. doi: 10.1098/rstb.2012.0320. Print 2013 Apr 19.
Dehalococcoides mccartyi strains are corrinoid-auxotrophic Bacteria and axenic cultures that require vitamin B12 (CN-Cbl) to conserve energy via organohalide respiration. Cultures of D. mccartyi strains BAV1, GT and FL2 grown with limiting amounts of 1 µg l(-1) CN-Cbl quickly depleted CN-Cbl, and reductive dechlorination of polychlorinated ethenes was incomplete leading to vinyl chloride (VC) accumulation. In contrast, the same cultures amended with 25 µg l(-1) CN-Cbl exhibited up to 2.3-fold higher dechlorination rates, 2.8-9.1-fold increased growth yields, and completely consumed growth-supporting chlorinated ethenes. To explore whether known cobamide-producing microbes supply Dehalococcoides with the required corrinoid cofactor, co-culture experiments were performed with the methanogen Methanosarcina barkeri strain Fusaro and two acetogens, Sporomusa ovata and Sporomusa sp. strain KB-1, as Dehalococcoides partner populations. During growth with H2/CO2, M. barkeri axenic cultures produced 4.2 ± 0.1 µg l(-1) extracellular cobamide (factor III), whereas the Sporomusa cultures produced phenolyl- and p-cresolyl-cobamides. Neither factor III nor the phenolic cobamides supported Dehalococcoides reductive dechlorination activity suggesting that M. barkeri and the Sporomusa sp. cannot fulfil Dehalococcoides' nutritional requirements. Dehalococcoides dechlorination activity and growth occurred in M. barkeri and Sporomusa sp. co-cultures amended with 10 µM 5',6'-dimethylbenzimidazole (DMB), indicating that a cobalamin is a preferred corrinoid cofactor of strains BAV1, GT and FL2 when grown with chlorinated ethenes as electron acceptors. Even though the methanogen and acetogen populations tested did not produce cobalamin, the addition of DMB enabled guided biosynthesis and generated a cobalamin that supported Dehalococcoides' activity and growth. Guided cobalamin biosynthesis may offer opportunities to sustain and enhance Dehalococcoides activity in contaminated subsurface environments.
地杆菌属菌株是钴胺素辅助营养缺陷型细菌,在严格的厌氧条件下,以有机卤化物作为电子受体进行呼吸作用时,需要维生素 B12(CN-Cbl)才能保存能量。用限量 1 µg l(-1) CN-Cbl 培养的地杆菌属 BAV1、GT 和 FL2 菌株,CN-Cbl 很快被耗尽,而多氯代乙烯的还原脱氯不完全,导致氯乙烯(VC)积累。相比之下,用 25 µg l(-1) CN-Cbl 补充的相同培养物表现出高达 2.3 倍的脱氯率、2.8-9.1 倍的生长产量,并完全消耗了支持生长的氯化代乙烯。为了探索已知的产生 cobamide 的微生物是否为地杆菌提供所需的钴胺素辅因子,进行了共培养实验,其中产甲烷菌 Methanosarcina barkeri 菌株 Fusaro 和两种产乙酸菌 Sporomusa ovata 和 Sporomusa sp. strain KB-1 作为地杆菌的共生种群。在 H2/CO2 生长过程中,M. barkeri 无菌培养物产生 4.2 ± 0.1 µg l(-1) 细胞外 cobamide(因子 III),而 Sporomusa 培养物产生酚基和对甲酚基 cobamides。因子 III 或酚 cobamides 都不支持地杆菌的还原脱氯活性,这表明 M. barkeri 和 Sporomusa sp. 不能满足地杆菌的营养需求。当用 10 µM 5',6'-二甲基苯并咪唑(DMB)补充时,地杆菌的脱氯活性和生长发生在 M. barkeri 和 Sporomusa sp. 共培养物中,这表明当用氯化代乙烯作为电子受体生长时,BAV1、GT 和 FL2 菌株更喜欢 cobamide 作为辅因子。尽管测试的产甲烷菌和产乙酸菌群体没有产生钴胺素,但添加 DMB 可以实现引导生物合成,并生成一种支持地杆菌活性和生长的钴胺素。引导生物合成的钴胺素可能为维持和增强污染地下环境中地杆菌的活性提供机会。