Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, USA.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):931-9. doi: 10.1136/amiajnl-2012-001453. Epub 2013 Mar 13.
OBJECTIVE: Natural language processing (NLP) tasks are commonly decomposed into subtasks, chained together to form processing pipelines. The residual error produced in these subtasks propagates, adversely affecting the end objectives. Limited availability of annotated clinical data remains a barrier to reaching state-of-the-art operating characteristics using statistically based NLP tools in the clinical domain. Here we explore the unique linguistic constructions of clinical texts and demonstrate the loss in operating characteristics when out-of-the-box part-of-speech (POS) tagging tools are applied to the clinical domain. We test a domain adaptation approach integrating a novel lexical-generation probability rule used in a transformation-based learner to boost POS performance on clinical narratives. METHODS: Two target corpora from independent healthcare institutions were constructed from high frequency clinical narratives. Four leading POS taggers with their out-of-the-box models trained from general English and biomedical abstracts were evaluated against these clinical corpora. A high performing domain adaptation method, Easy Adapt, was compared to our newly proposed method ClinAdapt. RESULTS: The evaluated POS taggers drop in accuracy by 8.5-15% when tested on clinical narratives. The highest performing tagger reports an accuracy of 88.6%. Domain adaptation with Easy Adapt reports accuracies of 88.3-91.0% on clinical texts. ClinAdapt reports 93.2-93.9%. CONCLUSIONS: ClinAdapt successfully boosts POS tagging performance through domain adaptation requiring a modest amount of annotated clinical data. Improving the performance of critical NLP subtasks is expected to reduce pipeline error propagation leading to better overall results on complex processing tasks.
目的:自然语言处理(NLP)任务通常分解为子任务,通过链连接形成处理管道。这些子任务中产生的残差传播,对最终目标产生不利影响。在临床领域,由于临床数据的标注可用性有限,基于统计的 NLP 工具仍然难以达到最新的操作特性。在这里,我们探索了临床文本的独特语言结构,并展示了当在临床领域应用现成的词性(POS)标记工具时,操作特性的损失。我们测试了一种域自适应方法,该方法将基于转换的学习者中使用的新词汇生成概率规则集成到 POS 性能提升中。 方法:从两个独立医疗机构构建了两个高频临床叙事的目标语料库。从通用英语和生物医学文摘中训练的四个领先的 POS 标记器及其默认模型,在这些临床语料库上进行了评估。与我们新提出的 ClinAdapt 方法相比,比较了高性能的域自适应方法 EasyAdapt。 结果:评估的 POS 标记器在测试临床叙事时的准确性下降了 8.5-15%。性能最高的标记器报告的准确率为 88.6%。通过 EasyAdapt 进行域自适应的准确率为 88.3-91.0%。ClinAdapt 报告的准确率为 93.2-93.9%。 结论:通过需要少量标注临床数据的域自适应,ClinAdapt 成功提高了 POS 标记性能。提高关键 NLP 子任务的性能有望减少管道错误传播,从而在复杂处理任务中获得更好的整体结果。
J Am Med Inform Assoc. 2013-3-13
AMIA Annu Symp Proc. 2011
Artif Intell Med. 2014-5
J Am Med Inform Assoc. 2007
J Biomed Inform. 2005-12
J Biomed Inform. 2016-10
Int J Med Inform. 2006-6
BMC Med Inform Decis Mak. 2019-4-9
Stud Health Technol Inform. 2010
Adv Chronic Kidney Dis. 2022-9
J Biomed Inform. 2015-12
Yearb Med Inform. 2015-8-13
J Am Med Inform Assoc. 2015-9
AMIA Annu Symp Proc. 2011
J Am Med Inform Assoc. 2007
J Biomed Inform. 2005-12
Int J Med Inform. 2006-6
Bioinformatics. 2004-9-22
Bioinformatics. 2003
J Biomed Inform. 2002-8