文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

对医学术语进行排序以支持扩展用于患者理解电子健康记录笔记的通俗语言资源:适应性远程监督方法。

Ranking Medical Terms to Support Expansion of Lay Language Resources for Patient Comprehension of Electronic Health Record Notes: Adapted Distant Supervision Approach.

作者信息

Chen Jinying, Jagannatha Abhyuday N, Fodeh Samah J, Yu Hong

机构信息

Department of Quantitative Health Sicences, University of Massachusetts Medical School, Worcester, MA, United States.

School of Computer Science, University of Massachusetts, Amherst, MA, United States.

出版信息

JMIR Med Inform. 2017 Oct 31;5(4):e42. doi: 10.2196/medinform.8531.


DOI:10.2196/medinform.8531
PMID:29089288
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5686421/
Abstract

BACKGROUND: Medical terms are a major obstacle for patients to comprehend their electronic health record (EHR) notes. Clinical natural language processing (NLP) systems that link EHR terms to lay terms or definitions allow patients to easily access helpful information when reading through their EHR notes, and have shown to improve patient EHR comprehension. However, high-quality lay language resources for EHR terms are very limited in the public domain. Because expanding and curating such a resource is a costly process, it is beneficial and even necessary to identify terms important for patient EHR comprehension first. OBJECTIVE: We aimed to develop an NLP system, called adapted distant supervision (ADS), to rank candidate terms mined from EHR corpora. We will give EHR terms ranked as high by ADS a higher priority for lay language annotation-that is, creating lay definitions for these terms. METHODS: Adapted distant supervision uses distant supervision from consumer health vocabulary and transfer learning to adapt itself to solve the problem of ranking EHR terms in the target domain. We investigated 2 state-of-the-art transfer learning algorithms (ie, feature space augmentation and supervised distant supervision) and designed 5 types of learning features, including distributed word representations learned from large EHR data for ADS. For evaluating ADS, we asked domain experts to annotate 6038 candidate terms as important or nonimportant for EHR comprehension. We then randomly divided these data into the target-domain training data (1000 examples) and the evaluation data (5038 examples). We compared ADS with 2 strong baselines, including standard supervised learning, on the evaluation data. RESULTS: The ADS system using feature space augmentation achieved the best average precision, 0.850, on the evaluation set when using 1000 target-domain training examples. The ADS system using supervised distant supervision achieved the best average precision, 0.819, on the evaluation set when using only 100 target-domain training examples. The 2 ADS systems both performed significantly better than the baseline systems (P<.001 for all measures and all conditions). Using a rich set of learning features contributed to ADS's performance substantially. CONCLUSIONS: ADS can effectively rank terms mined from EHRs. Transfer learning improved ADS's performance even with a small number of target-domain training examples. EHR terms prioritized by ADS were used to expand a lay language resource that supports patient EHR comprehension. The top 10,000 EHR terms ranked by ADS are available upon request.

摘要

背景:医学术语是患者理解其电子健康记录(EHR)笔记的主要障碍。将EHR术语与通俗易懂的术语或定义相链接的临床自然语言处理(NLP)系统,能让患者在阅读EHR笔记时轻松获取有用信息,且已证明可提高患者对EHR的理解。然而,公共领域中高质量的EHR术语通俗语言资源非常有限。由于扩展和整理这样的资源成本高昂,首先识别对患者EHR理解重要的术语是有益且必要的。 目的:我们旨在开发一种名为适应性远程监督(ADS)的NLP系统,对从EHR语料库中挖掘出的候选术语进行排序。我们将给予ADS排序为高的EHR术语更高的通俗语言注释优先级,即,为这些术语创建通俗定义。 方法:适应性远程监督利用来自消费者健康词汇的远程监督和迁移学习来调整自身,以解决在目标领域对EHR术语进行排序的问题。我们研究了2种先进的迁移学习算法(即,特征空间增强和监督远程监督),并设计了5种学习特征类型,包括从大量EHR数据中学习到的分布式词表示用于ADS。为了评估ADS,我们请领域专家将6038个候选术语标注为对EHR理解重要或不重要。然后我们将这些数据随机分为目标领域训练数据(1000个示例)和评估数据(5038个示例)。我们在评估数据上,将ADS与2个强大的基线进行比较,包括标准监督学习。 结果:当使用1000个目标领域训练示例时,使用特征空间增强的ADS系统在评估集上取得了最佳平均精度,为0.850。当仅使用100个目标领域训练示例时,使用监督远程监督的ADS系统在评估集上取得了最佳平均精度,为0.819。这2个ADS系统在所有指标和所有条件下的表现均显著优于基线系统(所有测量指标和所有条件下P< .001)。使用丰富的学习特征集对ADS的性能有很大贡献。 结论:ADS可以有效地对从EHR中挖掘出的术语进行排序。即使只有少量目标领域训练示例,迁移学习也提高了ADS的性能。ADS优先排序的EHR术语被用于扩展支持患者EHR理解的通俗语言资源。可根据要求提供ADS排序的前10000个EHR术语。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b8e/5686421/b0b11693f7ff/medinform_v5i4e42_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b8e/5686421/f6c1a2e1bc5e/medinform_v5i4e42_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b8e/5686421/b0b11693f7ff/medinform_v5i4e42_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b8e/5686421/f6c1a2e1bc5e/medinform_v5i4e42_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b8e/5686421/b0b11693f7ff/medinform_v5i4e42_fig2.jpg

相似文献

[1]
Ranking Medical Terms to Support Expansion of Lay Language Resources for Patient Comprehension of Electronic Health Record Notes: Adapted Distant Supervision Approach.

JMIR Med Inform. 2017-10-31

[2]
Finding Important Terms for Patients in Their Electronic Health Records: A Learning-to-Rank Approach Using Expert Annotations.

JMIR Med Inform. 2016-11-30

[3]
A Natural Language Processing System That Links Medical Terms in Electronic Health Record Notes to Lay Definitions: System Development Using Physician Reviews.

J Med Internet Res. 2018-1-22

[4]
Unsupervised ensemble ranking of terms in electronic health record notes based on their importance to patients.

J Biomed Inform. 2017-4

[5]
A comparison of word embeddings for the biomedical natural language processing.

J Biomed Inform. 2018-9-12

[6]
Identification of asthma control factor in clinical notes using a hybrid deep learning model.

BMC Med Inform Decis Mak. 2021-11-9

[7]
Automatic de-identification of French electronic health records: a cost-effective approach exploiting distant supervision and deep learning models.

BMC Med Inform Decis Mak. 2024-2-16

[8]
Improving Electronic Health Record Note Comprehension With NoteAid: Randomized Trial of Electronic Health Record Note Comprehension Interventions With Crowdsourced Workers.

J Med Internet Res. 2019-1-16

[9]
Automated feature selection of predictors in electronic medical records data.

Biometrics. 2019-3

[10]
Combining unsupervised, supervised and rule-based learning: the case of detecting patient allergies in electronic health records.

BMC Med Inform Decis Mak. 2023-9-18

引用本文的文献

[1]
Individual Factors That Affect Laypeople's Understanding of Definitions of Medical Jargon.

Health Policy Technol. 2024-12

[2]
Evaluating Expert-Layperson Agreement in Identifying Jargon Terms in Electronic Health Record Notes: Observational Study.

J Med Internet Res. 2024-10-15

[3]
Challenges and Opportunities for Professional Medical Publications Writers to Contribute to Plain Language Summaries (PLS) in an AI/ML Environment - A Consumer Health Informatics Systematic Review.

AMIA Annu Symp Proc. 2023

[4]
MedJEx: A Medical Jargon Extraction Model with Wiki's Hyperlink Span and Contextualized Masked Language Model Score.

Proc Conf Empir Methods Nat Lang Process. 2022-12

[5]
A model of integrating convolution and BiGRU dual-channel mechanism for Chinese medical text classifications.

PLoS One. 2023

[6]
A Study of eHealth from the Perspective of Social Sciences.

Healthcare (Basel). 2021-1-21

[7]
A clinical text classification paradigm using weak supervision and deep representation.

BMC Med Inform Decis Mak. 2019-1-7

[8]
A Natural Language Processing System That Links Medical Terms in Electronic Health Record Notes to Lay Definitions: System Development Using Physician Reviews.

J Med Internet Res. 2018-1-22

本文引用的文献

[1]
Trust and Credibility in Web-Based Health Information: A Review and Agenda for Future Research.

J Med Internet Res. 2017-6-19

[2]
Unsupervised ensemble ranking of terms in electronic health record notes based on their importance to patients.

J Biomed Inform. 2017-4

[3]
Finding Important Terms for Patients in Their Electronic Health Records: A Learning-to-Rank Approach Using Expert Annotations.

JMIR Med Inform. 2016-11-30

[4]
Extracting PICO Sentences from Clinical Trial Reports using .

J Mach Learn Res. 2016

[5]
Health Literacy and Health Information Technology Adoption: The Potential for a New Digital Divide.

J Med Internet Res. 2016-10-4

[6]
Expansion of medical vocabularies using distributional semantics on Japanese patient blogs.

J Biomed Semantics. 2016-9-26

[7]
Barriers and Facilitators to Online Portal Use Among Patients and Caregivers in a Safety Net Health Care System: A Qualitative Study.

J Med Internet Res. 2015-12-3

[8]
Patient Portals and Patient Engagement: A State of the Science Review.

J Med Internet Res. 2015-6-23

[9]
Domain adaptation for semantic role labeling of clinical text.

J Am Med Inform Assoc. 2015-9

[10]
Low health literacy and evaluation of online health information: a systematic review of the literature.

J Med Internet Res. 2015-5-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索