文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

CogStack-在大型国民保健制度基金会信托医院中部署集成信息检索和提取服务的经验。

CogStack - experiences of deploying integrated information retrieval and extraction services in a large National Health Service Foundation Trust hospital.

机构信息

Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigne Park, London, SE5 8AF, UK.

South London and Maudsley NHS Foundation Trust, Denmark Hill, London, SE5 8AZ, UK.

出版信息

BMC Med Inform Decis Mak. 2018 Jun 25;18(1):47. doi: 10.1186/s12911-018-0623-9.


DOI:10.1186/s12911-018-0623-9
PMID:29941004
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6020175/
Abstract

BACKGROUND: Traditional health information systems are generally devised to support clinical data collection at the point of care. However, as the significance of the modern information economy expands in scope and permeates the healthcare domain, there is an increasing urgency for healthcare organisations to offer information systems that address the expectations of clinicians, researchers and the business intelligence community alike. Amongst other emergent requirements, the principal unmet need might be defined as the 3R principle (right data, right place, right time) to address deficiencies in organisational data flow while retaining the strict information governance policies that apply within the UK National Health Service (NHS). Here, we describe our work on creating and deploying a low cost structured and unstructured information retrieval and extraction architecture within King's College Hospital, the management of governance concerns and the associated use cases and cost saving opportunities that such components present. RESULTS: To date, our CogStack architecture has processed over 300 million lines of clinical data, making it available for internal service improvement projects at King's College London. On generated data designed to simulate real world clinical text, our de-identification algorithm achieved up to 94% precision and up to 96% recall. CONCLUSION: We describe a toolkit which we feel is of huge value to the UK (and beyond) healthcare community. It is the only open source, easily deployable solution designed for the UK healthcare environment, in a landscape populated by expensive proprietary systems. Solutions such as these provide a crucial foundation for the genomic revolution in medicine.

摘要

背景:传统的健康信息系统通常旨在支持在护理点进行临床数据收集。然而,随着现代信息经济的意义在范围上扩大并渗透到医疗保健领域,医疗机构越来越迫切需要提供满足临床医生、研究人员和商业智能社区期望的信息系统。除了其他新兴需求外,主要未满足的需求可以定义为 3R 原则(正确的数据、正确的地点、正确的时间),以解决组织数据流中的缺陷,同时保留适用于英国国民保健制度(NHS)的严格信息治理政策。在这里,我们描述了我们在 King's College Hospital 内创建和部署低成本结构化和非结构化信息检索和提取架构的工作,管理治理问题以及这些组件带来的相关用例和节省成本的机会。

结果:迄今为止,我们的 CogStack 架构已经处理了超过 3 亿行临床数据,可供伦敦国王学院内部服务改进项目使用。在生成旨在模拟真实世界临床文本的数据时,我们的去识别算法达到了高达 94%的精度和高达 96%的召回率。

结论:我们描述了一个我们认为对英国(及其他地区)医疗保健社区具有巨大价值的工具包。它是唯一专为英国医疗保健环境设计的开源、易于部署的解决方案,在以昂贵的专有系统为主的环境中。这些解决方案为医学中的基因组革命提供了至关重要的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ae/6020175/146afff0c8cf/12911_2018_623_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ae/6020175/146afff0c8cf/12911_2018_623_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ae/6020175/146afff0c8cf/12911_2018_623_Fig2_HTML.jpg

相似文献

[1]
CogStack - experiences of deploying integrated information retrieval and extraction services in a large National Health Service Foundation Trust hospital.

BMC Med Inform Decis Mak. 2018-6-25

[2]
SemEHR: A general-purpose semantic search system to surface semantic data from clinical notes for tailored care, trial recruitment, and clinical research.

J Am Med Inform Assoc. 2018-5-1

[3]
Deployment of a Free-Text Analytics Platform at a UK National Health Service Research Hospital: CogStack at University College London Hospitals.

JMIR Med Inform. 2022-8-24

[4]
Foresight-a generative pretrained transformer for modelling of patient timelines using electronic health records: a retrospective modelling study.

Lancet Digit Health. 2024-4

[5]
Critical Care Network in the State of Qatar.

Qatar Med J. 2019-11-7

[6]
A method for cohort selection of cardiovascular disease records from an electronic health record system.

Int J Med Inform. 2017-6

[7]
Multi-domain clinical natural language processing with MedCAT: The Medical Concept Annotation Toolkit.

Artif Intell Med. 2021-7

[8]
Hospital-wide natural language processing summarising the health data of 1 million patients.

PLOS Digit Health. 2023-5-9

[9]
Using natural language processing to extract structured epilepsy data from unstructured clinic letters: development and validation of the ExECT (extraction of epilepsy clinical text) system.

BMJ Open. 2019-4-1

[10]
Information extraction from multi-institutional radiology reports.

Artif Intell Med. 2016-1

引用本文的文献

[1]
Racial and ethnic disparities in aortic stenosis within a universal healthcare system characterized by natural language processing for targeted intervention.

Eur Heart J Digit Health. 2025-3-18

[2]
Secondary use of health records for prediction, detection, and treatment planning in the clinical decision support system: a systematic review.

BMC Med Inform Decis Mak. 2025-5-16

[3]
Dual-stream algorithms for dementia detection: Harnessing structured and unstructured electronic health record data, a novel approach to prevalence estimation.

Alzheimers Dement. 2025-5

[4]
What can we learn from 68 000 clinical frailty scale scores? Evaluating the utility of frailty assessment in emergency departments.

Age Ageing. 2025-3-28

[5]
Natural language processing data services for healthcare providers.

BMC Med Inform Decis Mak. 2024-11-26

[6]
The Effects of COVID-19 on Antifungal Prescribing in the UK-Lessons to Learn.

J Fungi (Basel). 2024-11-13

[7]
Premature mortality and disparities in kidney healthcare for people with chronic kidney disease and severe mental health difficulties.

J Nephrol. 2024-12

[8]
Enhancing clinical data retrieval with Smart Watchers: a NiFi-based ETL pipeline for Elasticsearch queries.

BMC Med Inform Decis Mak. 2024-9-16

[9]
Early evaluation of a natural language processing tool to improve access to educational resources for surgical patients.

Eur Spine J. 2024-7

[10]
Clinical Information Retrieval: A Literature Review.

J Healthc Inform Res. 2024-1-23

本文引用的文献

[1]
NLP-PIER: A Scalable Natural Language Processing, Indexing, and Searching Architecture for Clinical Notes.

AMIA Jt Summits Transl Sci Proc. 2016-7-20

[2]
MIMIC-III, a freely accessible critical care database.

Sci Data. 2016-5-24

[3]
Cohort profile of the South London and Maudsley NHS Foundation Trust Biomedical Research Centre (SLaM BRC) Case Register: current status and recent enhancement of an Electronic Mental Health Record-derived data resource.

BMJ Open. 2016-3-1

[4]
Annotating longitudinal clinical narratives for de-identification: The 2014 i2b2/UTHealth corpus.

J Biomed Inform. 2015-12

[5]
Automated systems for the de-identification of longitudinal clinical narratives: Overview of 2014 i2b2/UTHealth shared task Track 1.

J Biomed Inform. 2015-12

[6]
Care episode retrieval: distributional semantic models for information retrieval in the clinical domain.

BMC Med Inform Decis Mak. 2015

[7]
Domain adaptation for semantic role labeling of clinical text.

J Am Med Inform Assoc. 2015-9

[8]
Automatic concept recognition using the human phenotype ontology reference and test suite corpora.

Database (Oxford). 2015-2-27

[9]
Developing a new model for patient recruitment in mental health services: a cohort study using Electronic Health Records.

BMJ Open. 2014-12-2

[10]
Negation's not solved: generalizability versus optimizability in clinical natural language processing.

PLoS One. 2014-11-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索