Unit of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland.
J Neurophysiol. 2013 Jun;109(11):2827-41. doi: 10.1152/jn.00375.2012. Epub 2013 Mar 13.
The reticular thalamic nucleus (RTN) of the mouse is characterized by an overwhelming majority of GABAergic neurons receiving afferences from both the thalamus and the cerebral cortex and sending projections mainly on thalamocortical neurons. The RTN neurons express high levels of the "slow Ca(2+) buffer" parvalbumin (PV) and are characterized by low-threshold Ca(2+) currents, I(T). We performed extracellular recordings in ketamine/xylazine anesthetized mice in the rostromedial portion of the RTN. In the RTN of wild-type and PV knockout (PVKO) mice we distinguished four types of neurons characterized on the basis of their firing pattern: irregular firing (type I), medium bursting (type II), long bursting (type III), and tonically firing (type IV). Compared with wild-type mice, we observed in the PVKOs the medium bursting (type II) more frequently than the long bursting type and longer interspike intervals within the burst without affecting the number of spikes. This suggests that PV may affect the firing properties of RTN neurons via a mechanism associated with the kinetics of burst discharges. Ca(v)3.2 channels, which mediate the I(T) currents, were more localized to the somatic plasma membrane of RTN neurons in PVKO mice, whereas Ca(v)3.3 expression was similar in both genotypes. The immunoelectron microscopy analysis showed that Ca(v)3.2 channels were localized at active axosomatic synapses, thus suggesting that the differential localization of Ca(v)3.2 in the PVKOs may affect bursting dynamics. Cross-correlation analysis of simultaneously recorded neurons from the same electrode tip showed that about one-third of the cell pairs tended to fire synchronously in both genotypes, independent of PV expression. In summary, PV deficiency does not affect the functional connectivity between RTN neurons but affects the distribution of Ca(v)3.2 channels and the dynamics of burst discharges of RTN cells, which in turn regulate the activity in the thalamocortical circuit.
小鼠的网状丘脑核(RTN)的特征是绝大多数 GABA 能神经元接收来自丘脑和大脑皮层的传入,并主要投射到丘脑皮质神经元上。RTN 神经元表达高水平的“慢钙缓冲剂” 钙调蛋白(parvalbumin,PV),并具有低阈值钙电流 I(T)。我们在氯胺酮/甲苯噻嗪麻醉的小鼠 RTN 的前内侧部分进行了细胞外记录。在野生型和 PV 敲除 (PVKO) 小鼠的 RTN 中,我们根据其放电模式区分了四种类型的神经元:不规则放电 (I 型)、中爆发 (II 型)、长爆发 (III 型) 和持续放电 (IV 型)。与野生型小鼠相比,我们在 PVKO 中观察到中爆发 (II 型)比长爆发型更频繁,爆发期间的脉冲间隔更长,而不影响脉冲数。这表明 PV 可能通过与爆发放电动力学相关的机制影响 RTN 神经元的放电特性。介导 I(T)电流的 Ca(v)3.2 通道在 PVKO 小鼠的 RTN 神经元中更定位于体细胞膜,而两种基因型的 Ca(v)3.3 表达相似。免疫电镜分析显示,Ca(v)3.2 通道定位于活跃的轴突-体突触,因此表明 PVKO 中 Ca(v)3.2 的差异定位可能影响爆发动力学。从同一电极尖端同时记录的神经元的互相关分析表明,大约三分之一的细胞对在两种基因型中倾向于同步放电,与 PV 表达无关。总之,PV 缺乏不影响 RTN 神经元之间的功能连接,但影响 Ca(v)3.2 通道的分布和 RTN 细胞爆发放电的动力学,进而调节丘脑皮质回路的活动。