Porcello Darrell M, Ho Chi Shun, Joho Rolf H, Huguenard John R
Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, CA 94305, USA.
J Neurophysiol. 2002 Mar;87(3):1303-10. doi: 10.1152/jn.00556.2001.
Fast spiking (FS), GABAergic neurons of the reticular thalamic nucleus (RTN) are capable of firing high-frequency trains of brief action potentials, with little adaptation. Studies in recombinant systems have shown that high-voltage-activated K(+) channels containing the Kv3.1 and/or Kv3.2 subunits display biophysical properties that may contribute to the FS phenotype. Given that RTN expresses high levels of Kv3.1, with little or no Kv3.2, we tested whether this subunit was required for the fast action potential repolarization mechanism essential to the FS phenotype. Single- and multiple-action potentials were recorded using whole-cell current clamp in RTN neurons from brain slices of wild-type and Kv3.1-deficient mice. At 23 degrees C, action potentials recorded from homozygous Kv3.1 deficient mice (Kv3.1(-/-)) compared with their wild-type (Kv3.1(+/+)) counterparts had reduced amplitudes (-6%) and fast after-hyperpolarizations (-16%). At 34 degrees C, action potentials in Kv3.1(-/-) mice had increased duration (21%) due to a reduced rate of repolarization (-30%) when compared with wild-type controls. Action potential trains in Kv3.1(-/-) were associated with a significantly greater spike decrement and broadening and a diminished firing frequency versus injected current relationship (F/I) at 34 degrees C. There was no change in either spike count or maximum instantaneous frequency during low-threshold Ca(2+) bursts in Kv3.1(-/-) RTN neurons at either temperature tested. Our findings show that Kv3.1 is not solely responsible for fast spikes or high-frequency firing in RTN neurons. This suggests genetic redundancy in the system, possibly in the form of other Kv3 members, which may suffice to maintain the FS phenotype in RTN neurons in the absence of Kv3.1.
网状丘脑核(RTN)中的快速放电(FS)、γ-氨基丁酸能神经元能够产生高频的短暂动作电位序列,且几乎没有适应性变化。重组系统研究表明,含有Kv3.1和/或Kv3.2亚基的高电压激活钾通道呈现出的生物物理特性,可能有助于形成FS表型。鉴于RTN中Kv3.1表达水平高,而Kv3.2表达很少或不表达,我们测试了该亚基对于FS表型所必需的快速动作电位复极化机制是否是必需的。使用全细胞电流钳记录来自野生型和Kv3.1基因敲除小鼠脑片的RTN神经元中的单动作电位和多动作电位。在23℃时,与野生型(Kv3.1(+/+))小鼠相比,纯合Kv3.1基因敲除小鼠(Kv3.1(-/-))记录到的动作电位幅度降低(-6%),快速超极化后电位降低(-16%)。在34℃时,与野生型对照相比,Kv3.1(-/-)小鼠的动作电位持续时间增加(21%),这是由于复极化速率降低(-30%)所致。在34℃时,Kv3.1(-/-)小鼠的动作电位序列与明显更大的峰电位衰减和展宽以及注入电流与放电频率关系(F/I)的减弱有关。在两个测试温度下,Kv3.1(-/-) RTN神经元低阈值钙爆发期间的峰电位计数或最大瞬时频率均无变化。我们的研究结果表明,Kv3.1并非RTN神经元快速放电或高频放电的唯一原因。这表明该系统中存在基因冗余,可能以其他Kv3成员的形式存在,在没有Kv3.1的情况下,它们可能足以维持RTN神经元的FS表型。