Suppr超能文献

纤毛列阵中协同波的出现。

Emergence of metachronal waves in cilia arrays.

机构信息

Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.

出版信息

Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4470-5. doi: 10.1073/pnas.1218869110. Epub 2013 Mar 4.

Abstract

Propulsion by cilia is a fascinating and universal mechanism in biological organisms to generate fluid motion on the cellular level. Cilia are hair-like organelles, which are found in many different tissues and many uni- and multicellular organisms. Assembled in large fields, cilia beat neither randomly nor completely synchronously--instead they display a striking self-organization in the form of metachronal waves (MCWs). It was speculated early on that hydrodynamic interactions provide the physical mechanism for the synchronization of cilia motion. Theory and simulations of physical model systems, ranging from arrays of highly simplified actuated particles to a few cilia or cilia chains, support this hypothesis. The main questions are how the individual cilia interact with the flow field generated by their neighbors and synchronize their beats for the metachronal wave to emerge and how the properties of the metachronal wave are determined by the geometrical arrangement of the cilia, like cilia spacing and beat direction. Here, we address these issues by large-scale computer simulations of a mesoscopic model of 2D cilia arrays in a 3D fluid medium. We show that hydrodynamic interactions are indeed sufficient to explain the self-organization of MCWs and study beat patterns, stability, energy expenditure, and transport properties. We find that the MCW can increase propulsion velocity more than 3-fold and efficiency almost 10-fold--compared with cilia all beating in phase. This can be a vital advantage for ciliated organisms and may be interesting to guide biological experiments as well as the design of efficient microfluidic devices and artificial microswimmers.

摘要

纤毛推动是生物体内一种迷人且普遍的机制,可在细胞水平上产生流体运动。纤毛是一种毛发状的细胞器,存在于许多不同的组织和许多单细胞和多细胞生物中。大量的纤毛组装在一起,其摆动既不是随机的,也不是完全同步的——相反,它们以律动波(MCWs)的形式表现出惊人的自组织。早期有人推测,流体动力相互作用为纤毛运动的同步提供了物理机制。从高度简化的受驱动粒子阵列到少数几个纤毛或纤毛链的物理模型系统的理论和模拟都支持这一假设。主要问题是单个纤毛如何与相邻纤毛产生的流场相互作用,并同步它们的摆动以产生律动波,以及律动波的特性如何由纤毛的几何排列决定,例如纤毛间距和摆动方向。在这里,我们通过在 3D 流体介质中对 2D 纤毛阵列的介观模型进行大规模计算机模拟来解决这些问题。我们表明,流体动力相互作用确实足以解释 MCWs 的自组织,并研究了拍打模式、稳定性、能量消耗和输运性质。我们发现,与所有纤毛同步拍打相比,MCW 可以将推进速度提高 3 倍以上,效率提高近 10 倍。对于有纤毛的生物来说,这可能是一个至关重要的优势,并且可能对指导生物实验以及设计高效的微流控装置和人工微型游泳者都很有趣。

相似文献

1
Emergence of metachronal waves in cilia arrays.纤毛列阵中协同波的出现。
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4470-5. doi: 10.1073/pnas.1218869110. Epub 2013 Mar 4.
5
Metachronal motion of artificial magnetic cilia.人工磁纤毛的协同运动。
Soft Matter. 2018 May 16;14(19):3689-3693. doi: 10.1039/c8sm00549d.
8
Conditions for metachronal coordination in arrays of model cilia.模型纤毛列阵中的准同步协调条件。
Proc Natl Acad Sci U S A. 2021 Aug 10;118(32). doi: 10.1073/pnas.2102828118.

引用本文的文献

1
Form and function in biological filaments: a physicist's review.生物细丝的形态与功能:物理学家的综述
Philos Trans A Math Phys Eng Sci. 2025 Sep 11;383(2304):20240253. doi: 10.1098/rsta.2024.0253.
4
Flow Physics Guides Morphology of Ciliated Organs.流体物理学引导纤毛器官的形态形成。
Nat Phys. 2024 Oct;20(10):1679-1686. doi: 10.1038/s41567-024-02591-0. Epub 2024 Jul 29.
7
Multiorifice acoustic microrobot for boundary-free multimodal 3D swimming.用于无边界多模态3D游动的多孔径声学微型机器人。
Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2417111122. doi: 10.1073/pnas.2417111122. Epub 2025 Jan 22.
8
Active fluctuations of axoneme oscillations scale with number of dynein motors.轴丝摆动的主动涨落与动力蛋白数量成比例。
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2406244121. doi: 10.1073/pnas.2406244121. Epub 2024 Nov 5.
10
Curved Surfaces Induce Metachronal Motion of Microscopic Magnetic Cilia.曲面诱导微观磁性纤毛的协同运动。
ACS Appl Mater Interfaces. 2024 Jul 24;16(29):38733-38743. doi: 10.1021/acsami.4c06884. Epub 2024 Jul 10.

本文引用的文献

1
Swimming like algae: biomimetic soft artificial cilia.像藻类一样游动:仿生柔性人工纤毛。
J R Soc Interface. 2013 Jan 6;10(78):20120666. doi: 10.1098/rsif.2012.0666. Epub 2012 Nov 8.
2
Kinematics of the most efficient cilium.最有效率的纤毛的运动学。
Phys Rev Lett. 2012 Jul 20;109(3):038101. doi: 10.1103/PhysRevLett.109.038101. Epub 2012 Jul 17.
3
Finding the ciliary beating pattern with optimal efficiency.寻找具有最佳效率的纤毛拍打模式。
Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15727-32. doi: 10.1073/pnas.1107889108. Epub 2011 Sep 6.
4
Cilia-like beating of active microtubule bundles.微管束的纤毛样摆动。
Science. 2011 Jul 22;333(6041):456-9. doi: 10.1126/science.1203963.
5
Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering.细菌细胞间和细胞表面散射中的流体力和噪声。
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):10940-5. doi: 10.1073/pnas.1019079108. Epub 2011 Jun 20.
6
Metachronal waves in a chain of rowers with hydrodynamic interactions.具有流体动力相互作用的一排划桨者中的相继波动。
Eur Phys J E Soft Matter. 2011 Apr;34(4):42. doi: 10.1140/epje/i2011-11042-7. Epub 2011 Apr 21.
7
Hydrodynamics of sperm cells near surfaces.精子细胞在表面附近的流体动力学。
Biophys J. 2010 Aug 9;99(4):1018-26. doi: 10.1016/j.bpj.2010.05.015.
8
Fidelity of adaptive phototaxis.自适应趋光性的保真度。
Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11171-6. doi: 10.1073/pnas.1000901107. Epub 2010 Jun 7.
9
Synchronization and collective dynamics in a carpet of microfluidic rotors.微流控转子地毯中的同步和集体动力学。
Phys Rev Lett. 2010 Apr 30;104(17):178103. doi: 10.1103/PhysRevLett.104.178103. Epub 2010 Apr 26.
10
Self-assembled artificial cilia.自组装人工纤毛。
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1844-7. doi: 10.1073/pnas.0906819106. Epub 2009 Nov 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验