Johnson Bruce R, Wyttenbach Robert A, Wayne Randy, Hoy Ronald R
Departments of Neurobiology and Behavior, S.G. Mudd Hall and.
J Undergrad Neurosci Educ. 2002 Fall;1(1):A23-7. Epub 2002 Oct 15.
The giant alga Chara corallina generates action potentials (APs) in response to mechanical stimulation, injury, or direct electrical stimulation. Students examine the waveform characteristics of these APs using standard intracellular recording techniques. Intracellular recording is easier than with neurons because of the large size of the Chara cell. Students observe very negative resting potentials (up to -250 mV), large AP amplitudes with depolarizing peaks approaching 0 mV, AP durations of seconds, and refractory periods up to several minutes. Students calculate Nernst potentials for the ions distributed across the Chara cell membrane to hypothesize the ions responsible for the resting potential and for the depolarizing phase of the AP. These calculations suggest that K(+) is responsible for the resting potential and that Ca(2+) influx and Ca(2+)-activated Cl(-) efflux are responsible for depolarizing phases of the AP, which they are. Comparison of the Chara AP characteristics with animal neuron and muscle APs reinforces understanding of mechanisms of excitability in animals, demonstrates that multiple solutions exist for action potential generation, and leads to discussion of the evolution of ion channels and excitability.
巨型藻类轮藻(Chara corallina)会因机械刺激、损伤或直接电刺激而产生动作电位(APs)。学生们使用标准的细胞内记录技术来研究这些动作电位的波形特征。由于轮藻细胞体积较大,细胞内记录比在神经元上进行更容易。学生们观察到非常负的静息电位(高达 -250 mV)、具有接近 0 mV 去极化峰值的大动作电位幅度、持续数秒的动作电位持续时间以及长达几分钟的不应期。学生们计算分布在轮藻细胞膜上的离子的能斯特电位,以推测负责静息电位和动作电位去极化阶段的离子。这些计算表明,K(+) 负责静息电位,Ca(2+) 内流和 Ca(2+) 激活的 Cl(-) 外流负责动作电位的去极化阶段,实际情况确实如此。将轮藻动作电位特征与动物神经元和肌肉动作电位进行比较,有助于加深对动物兴奋性机制的理解,表明动作电位产生存在多种解决方案,并引发对离子通道和兴奋性进化的讨论。