Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
EMBO J. 2013 May 15;32(10):1352-64. doi: 10.1038/emboj.2013.59. Epub 2013 Mar 15.
Microtubules are fundamental to neuronal morphogenesis and function. Mutations in tubulin, the major constituent of microtubules, result in neuronal diseases. Here, we have analysed β-tubulin mutations that cause neuronal diseases and we have identified mutations that strongly inhibit axonal transport of vesicles and mitochondria. These mutations are in the H12 helix of β-tubulin and change the negative charge on the surface of the microtubule. This surface is the interface between microtubules and kinesin superfamily motor proteins (KIF). The binding of axonal transport KIFs to microtubules is dominant negatively disrupted by these mutations, which alters the localization of KIFs in neurons and inhibits axon elongation in vivo. In humans, these mutations induce broad neurological symptoms, such as loss of axons in the central nervous system and peripheral neuropathy. Thus, our data identified the critical region of β-tubulin required for axonal transport and suggest a molecular mechanism for human neuronal diseases caused by tubulin mutations.
微管对于神经元形态发生和功能至关重要。微管的主要成分微管蛋白的突变会导致神经元疾病。在这里,我们分析了导致神经元疾病的β-微管突变,并鉴定出了强烈抑制囊泡和线粒体轴突运输的突变。这些突变位于β-微管的 H12 螺旋中,改变了微管表面的负电荷。该表面是微管与驱动蛋白超家族马达蛋白(KIF)之间的界面。这些突变强烈抑制了轴突运输 KIF 与微管的结合,这种结合被显性负性破坏,从而改变了神经元中 KIF 的定位,并抑制体内轴突伸长。在人类中,这些突变导致广泛的神经症状,例如中枢神经系统中的轴突丧失和周围神经病。因此,我们的数据确定了β-微管对于轴突运输所必需的关键区域,并提出了由微管突变引起的人类神经元疾病的分子机制。