Suppr超能文献

用于实现双向脑假体的体外大规模实验和理论研究。

In vitro large-scale experimental and theoretical studies for the realization of bi-directional brain-prostheses.

机构信息

School of Physics and Astronomy, Tel Aviv University Tel Aviv, Israel.

出版信息

Front Neural Circuits. 2013 Mar 14;7:40. doi: 10.3389/fncir.2013.00040. eCollection 2013.

Abstract

Brain-machine interfaces (BMI) were born to control "actions from thoughts" in order to recover motor capability of patients with impaired functional connectivity between the central and peripheral nervous system. The final goal of our studies is the development of a new proof-of-concept BMI-a neuromorphic chip for brain repair-to reproduce the functional organization of a damaged part of the central nervous system. To reach this ambitious goal, we implemented a multidisciplinary "bottom-up" approach in which in vitro networks are the paradigm for the development of an in silico model to be incorporated into a neuromorphic device. In this paper we present the overall strategy and focus on the different building blocks of our studies: (i) the experimental characterization and modeling of "finite size networks" which represent the smallest and most general self-organized circuits capable of generating spontaneous collective dynamics; (ii) the induction of lesions in neuronal networks and the whole brain preparation with special attention on the impact on the functional organization of the circuits; (iii) the first production of a neuromorphic chip able to implement a real-time model of neuronal networks. A dynamical characterization of the finite size circuits with single cell resolution is provided. A neural network model based on Izhikevich neurons was able to replicate the experimental observations. Changes in the dynamics of the neuronal circuits induced by optical and ischemic lesions are presented respectively for in vitro neuronal networks and for a whole brain preparation. Finally the implementation of a neuromorphic chip reproducing the network dynamics in quasi-real time (10 ns precision) is presented.

摘要

脑机接口 (BMI) 的诞生是为了控制“来自思维的动作”,以恢复中枢和外周神经系统之间功能连接受损的患者的运动能力。我们研究的最终目标是开发一种新的概念验证 BMI-用于大脑修复的神经形态芯片-以再现中枢神经系统受损部分的功能组织。为了实现这一雄心勃勃的目标,我们采用了多学科的“自下而上”方法,其中体外网络是开发可纳入神经形态设备的计算模型的范例。在本文中,我们介绍了总体策略,并重点介绍了我们研究的不同组成部分:(i) “有限大小网络”的实验表征和建模,这些网络代表了能够产生自发集体动力学的最小和最通用的自组织电路;(ii) 神经元网络和整个大脑的损伤诱导,特别关注对电路功能组织的影响;(iii) 第一个能够实时实现神经元网络模型的神经形态芯片的生产。提供了具有单细胞分辨率的有限大小电路的动力学特征化。基于 Izhikevich 神经元的神经网络模型能够复制实验观察结果。分别为体外神经元网络和整个大脑准备展示了由光和缺血性损伤引起的神经元电路动力学变化。最后,提出了一种神经形态芯片,能够以准实时(10ns 精度)再现网络动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f57/3596784/ff6aed3e069f/fncir-07-00040-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验