Suppr超能文献

基于生物启发的浮栅的神经形态集成电路的尖峰神经元网络的计算。

Computing with networks of spiking neurons on a biophysically motivated floating-gate based neuromorphic integrated circuit.

机构信息

Georgia Institute of Technology, Technology Square Research Building, Atlanta, GA 30308, USA.

出版信息

Neural Netw. 2013 Sep;45:39-49. doi: 10.1016/j.neunet.2013.02.011. Epub 2013 Mar 7.

Abstract

Results are presented from several spiking network experiments performed on a novel neuromorphic integrated circuit. The networks are discussed in terms of their computational significance, which includes applications such as arbitrary spatiotemporal pattern generation and recognition, winner-take-all competition, stable generation of rhythmic outputs, and volatile memory. Analogies to the behavior of real biological neural systems are also noted. The alternatives for implementing the same computations are discussed and compared from a computational efficiency standpoint, with the conclusion that implementing neural networks on neuromorphic hardware is significantly more power efficient than numerical integration of model equations on traditional digital hardware.

摘要

本文介绍了在新型神经形态集成电路上进行的几个尖峰神经网络实验的结果。讨论了这些网络的计算意义,包括任意时空模式生成和识别、胜者全拿竞争、稳定的节奏输出生成以及易失性存储器等应用。还注意到了与真实生物神经网络行为的类比。从计算效率的角度讨论并比较了实现相同计算的替代方案,得出的结论是,在神经形态硬件上实现神经网络比在传统数字硬件上数值积分模型方程的效率要高得多。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验