Suppr超能文献

增生性瘢痕的分子机制。

The molecular mechanism of hypertrophic scar.

机构信息

Wound Healing Research Group, Department of Surgery, University of Alberta, WMC 2D2.28, 8440-112 Street, Edmonton AB, Canada, T6G 2B7.

出版信息

J Cell Commun Signal. 2013 Dec;7(4):239-52. doi: 10.1007/s12079-013-0195-5. Epub 2013 Mar 18.

Abstract

Hypertrophic scar (HTS) is a dermal form of fibroproliferative disorder which often develops after thermal or traumatic injury to the deep regions of the skin and is characterized by excessive deposition and alterations in morphology of collagen and other extracellular matrix (ECM) proteins. HTS are cosmetically disfiguring and can cause functional problems that often recur despite surgical attempts to remove or improve the scars. In this review, the roles of various fibrotic and anti-fibrotic molecules are discussed in order to improve our understanding of the molecular mechanism of the pathogenesis of HTS. These molecules include growth factors, cytokines, ECM molecules, and proteolytic enzymes. By exploring the mechanisms of this form of dermal fibrosis, we seek to provide some insight into this form of dermal fibrosis that may allow clinicians to improve treatment and prevention in the future.

摘要

增生性瘢痕(HTS)是一种皮肤纤维化疾病,通常发生在皮肤深部受到热或创伤后,其特征是胶原和其他细胞外基质(ECM)蛋白的过度沉积和形态改变。HTS 会影响外观美观,并导致功能问题,尽管尝试通过手术去除或改善疤痕,但这些问题经常复发。在这篇综述中,讨论了各种纤维化和抗纤维化分子的作用,以增进我们对 HTS 发病机制的分子机制的理解。这些分子包括生长因子、细胞因子、细胞外基质分子和蛋白水解酶。通过探索这种形式的皮肤纤维化的机制,我们试图提供一些对此种形式的皮肤纤维化的深入了解,这可能使临床医生能够在未来改善治疗和预防。

相似文献

1
The molecular mechanism of hypertrophic scar.
J Cell Commun Signal. 2013 Dec;7(4):239-52. doi: 10.1007/s12079-013-0195-5. Epub 2013 Mar 18.
2
Novel methods for the investigation of human hypertrophic scarring and other dermal fibrosis.
Methods Mol Biol. 2013;1037:203-31. doi: 10.1007/978-1-62703-505-7_11.
3
The Biology of Extracellular Matrix Proteins in Hypertrophic Scarring.
Adv Wound Care (New Rochelle). 2022 May;11(5):234-254. doi: 10.1089/wound.2020.1257. Epub 2021 Jul 5.
4
A Novel Nude Mouse Model of Hypertrophic Scarring Using Scratched Full Thickness Human Skin Grafts.
Adv Wound Care (New Rochelle). 2016 Jul 1;5(7):299-313. doi: 10.1089/wound.2015.0670.
6
The Role of Chemokines in Fibrotic Wound Healing.
Adv Wound Care (New Rochelle). 2015 Nov 1;4(11):673-686. doi: 10.1089/wound.2014.0550.
9
Extracellular matrix molecules implicated in hypertrophic and keloid scarring.
J Eur Acad Dermatol Venereol. 2012 Feb;26(2):141-52. doi: 10.1111/j.1468-3083.2011.04200.x. Epub 2011 Aug 12.
10
Comparative proteomic analysis of extracellular matrix proteins secreted by hypertrophic scar with normal skin fibroblasts.
Burns Trauma. 2014 Apr 6;2(2):76-83. doi: 10.4103/2321-3868.130191. eCollection 2014.

引用本文的文献

2
Efficacy of fractional carbon dioxide laser-assisted drug delivery in the management of post-burn scars - A prospective study.
J Cutan Aesthet Surg. 2024 Jul-Sep;17(3):219-226. doi: 10.25259/jcas_181_23. Epub 2024 Aug 29.
4
The Pathophysiology and Management of Pathologic Scarring-a Contemporary Review.
Adv Wound Care (New Rochelle). 2025 Jan;14(1):48-64. doi: 10.1089/wound.2023.0185. Epub 2024 Apr 25.
5
Biological importance of human amniotic membrane in tissue engineering and regenerative medicine.
Mater Today Bio. 2023 Sep 1;22:100790. doi: 10.1016/j.mtbio.2023.100790. eCollection 2023 Oct.
6
An audit of the use of fractional CO2 laser for hypertrophic burn scars: a real-life perspective.
Lasers Med Sci. 2023 Jun 22;38(1):144. doi: 10.1007/s10103-023-03814-1.
9
Immune cells and associated molecular markers in dermal fibrosis with focus on raised cutaneous scars.
Exp Dermatol. 2023 May;32(5):570-587. doi: 10.1111/exd.14734. Epub 2023 Feb 20.
10
Myofibroblasts, B Cells, and Mast Cells in Different Types of Long-Standing Acne Scars.
Skin Appendage Disord. 2022 Nov;8(6):469-475. doi: 10.1159/000524566. Epub 2022 May 12.

本文引用的文献

1
Wound repair and regeneration.
Eur Surg Res. 2012;49(1):35-43. doi: 10.1159/000339613. Epub 2012 Jul 11.
2
Impaired cutaneous wound healing in transforming growth factor-β inducible early gene1 knockout mice.
Wound Repair Regen. 2012 Mar-Apr;20(2):166-77. doi: 10.1111/j.1524-475X.2012.00773.x.
3
Deep dermal fibroblasts refractory to migration and decorin-induced apoptosis contribute to hypertrophic scarring.
J Burn Care Res. 2012 Sep-Oct;33(5):668-77. doi: 10.1097/BCR.0b013e31824088e3.
4
Stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 in the formation of postburn hypertrophic scar (HTS).
Wound Repair Regen. 2011 Sep-Oct;19(5):568-78. doi: 10.1111/j.1524-475X.2011.00724.x.
5
Reduced decorin, fibromodulin, and transforming growth factor-β3 in deep dermis leads to hypertrophic scarring.
J Burn Care Res. 2012 Mar-Apr;33(2):218-27. doi: 10.1097/BCR.0b013e3182335980.
6
Enhanced secretion of TIMP-1 by human hypertrophic scar keratinocytes could contribute to fibrosis.
Burns. 2012 May;38(3):421-7. doi: 10.1016/j.burns.2011.09.001. Epub 2011 Oct 29.
7
Therapeutic potential of fibroblast growth factor-2 for hypertrophic scars: upregulation of MMP-1 and HGF expression.
Lab Invest. 2012 Feb;92(2):214-23. doi: 10.1038/labinvest.2011.127. Epub 2011 Sep 26.
8
Extracellular matrix molecules implicated in hypertrophic and keloid scarring.
J Eur Acad Dermatol Venereol. 2012 Feb;26(2):141-52. doi: 10.1111/j.1468-3083.2011.04200.x. Epub 2011 Aug 12.
9
Biology and clinical relevance of chemokines and chemokine receptors CXCR4 and CCR5 in human diseases.
Exp Biol Med (Maywood). 2011 Jun 1;236(6):637-47. doi: 10.1258/ebm.2011.010389. Epub 2011 May 12.
10
Small leucine-rich proteoglycans, decorin and fibromodulin, are reduced in postburn hypertrophic scar.
Wound Repair Regen. 2011 May-Jun;19(3):368-78. doi: 10.1111/j.1524-475X.2011.00677.x. Epub 2011 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验