Suppr超能文献

肿瘤放射成像中的计算机辅助诊断系统。

Computer assisted diagnostic system in tumor radiography.

作者信息

Faisal Ahmed, Parveen Sharmin, Badsha Shahriar, Sarwar Hasan, Reza Ahmed Wasif

机构信息

Department of Computer System & Technology, Faculty of Computer Science & Information Technology, University of Malaya, 50603, Kuala Lumpur, Malaysia,

出版信息

J Med Syst. 2013 Jun;37(3):9938. doi: 10.1007/s10916-013-9938-3. Epub 2013 Mar 17.

Abstract

An improved and efficient method is presented in this paper to achieve a better trade-off between noise removal and edge preservation, thereby detecting the tumor region of MRI brain images automatically. Compass operator has been used in the fourth order Partial Differential Equation (PDE) based denoising technique to preserve the anatomically significant information at the edges. A new morphological technique is also introduced for stripping skull region from the brain images, which consequently leading to the process of detecting tumor accurately. Finally, automatic seeded region growing segmentation based on an improved single seed point selection algorithm is applied to detect the tumor. The method is tested on publicly available MRI brain images and it gives an average PSNR (Peak Signal to Noise Ratio) of 36.49. The obtained results also show detection accuracy of 99.46%, which is a significant improvement than that of the existing results.

摘要

本文提出了一种改进的高效方法,以在去噪和边缘保留之间实现更好的权衡,从而自动检测MRI脑图像的肿瘤区域。罗盘算子已用于基于四阶偏微分方程(PDE)的去噪技术中,以保留边缘处具有解剖学意义的信息。还引入了一种新的形态学技术,用于从脑图像中剥离颅骨区域,从而实现准确检测肿瘤的过程。最后,基于改进的单种子点选择算法的自动种子区域生长分割用于检测肿瘤。该方法在公开可用的MRI脑图像上进行了测试,平均峰值信噪比(PSNR)为36.49。所得结果还显示检测准确率为99.46%,比现有结果有显著提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验