Suppr超能文献

基于非局部全变差正则化的分析型低剂量CBCT重建在图像引导放射治疗中的应用

Analytical Low-Dose CBCT Reconstruction Using Non-local Total Variation Regularization for Image Guided Radiation Therapy.

作者信息

Sohn James J, Kim Changsoo, Kim Dong Hyun, Lee Seu-Ran, Zhou Jun, Yang Xiaofeng, Liu Tian

机构信息

Department of Radiation Oncology, Emory University, Atlanta, Georgia.

Department of Radiological Science, The Catholic University of Pusan, Busan, South Korea.

出版信息

Front Oncol. 2020 Feb 27;10:242. doi: 10.3389/fonc.2020.00242. eCollection 2020.

Abstract

Conventional iterative low-dose CBCT reconstruction techniques are slow and tend to over-smooth edges through uniform weighting of the image penalty gradient. In this study, we present a non-iterative analytical low-dose CBCT reconstruction technique by restoring the noisy low-dose CBCT projection with the non-local total variation (NLTV) method. We modeled the low-dose CBCT reconstruction as recovering high quality, high-dose CBCT x-ray projections (100 kVp, 1.6 mAs) from low-dose, noisy CBCT x-ray projections (100 kVp, 0.1 mAs). The restoration of CBCT projections was performed using the NLTV regularization method. In NLTV, the x-ray image is optimized by minimizing an energy function that penalizes gray-level difference between pair of pixels between noisy x-ray projection and denoising x-ray projection. After the noisy projection is restored by NLTV regularization, the standard FDK method was applied to generate the final reconstruction output. Significant noise reduction was achieved comparing to original, noisy inputs while maintaining the image quality comparable to the high-dose CBCT projections. The experimental validations show the proposed NLTV algorithm can robustly restore the noise level of x-ray projection images while significantly improving the overall image quality. The improvement in normalized mean square error (NMSE) and peak signal-to-noise ratio (PSNR) measured from the non-local total variation-gradient projection (NLTV-GPSR) algorithm is noticeable compared to that of uncorrected low-dose CBCT images. Moreover, the difference of CNRs from the gains from the proposed algorithm is noticeable and comparable to high-dose CBCT. The proposed method successfully restores noise degraded, low-dose CBCT projections to high-dose projection quality. Such an outcome is a considerable improvement to the reconstruction result compared to the FDK-based method. In addition, a significant reduction in reconstruction time makes the proposed algorithm more attractive. This demonstrates the potential use of the proposed algorithm for clinical practice in radiotherapy.

摘要

传统的迭代低剂量CBCT重建技术速度较慢,并且由于对图像惩罚梯度进行均匀加权,往往会过度平滑边缘。在本研究中,我们提出了一种非迭代分析低剂量CBCT重建技术,通过非局部总变分(NLTV)方法恢复有噪声的低剂量CBCT投影。我们将低剂量CBCT重建建模为从低剂量、有噪声的CBCT X射线投影(100 kVp,0.1 mAs)中恢复高质量、高剂量CBCT X射线投影(100 kVp,1.6 mAs)。使用NLTV正则化方法对CBCT投影进行恢复。在NLTV中,通过最小化一个能量函数来优化X射线图像,该能量函数惩罚有噪声的X射线投影和去噪后的X射线投影之间像素对的灰度级差异。在通过NLTV正则化恢复有噪声的投影后,应用标准的FDK方法生成最终的重建输出。与原始的有噪声输入相比,实现了显著的降噪,同时保持了与高剂量CBCT投影相当的图像质量。实验验证表明,所提出的NLTV算法能够稳健地恢复X射线投影图像的噪声水平,同时显著提高整体图像质量。与未校正的低剂量CBCT图像相比,从非局部总变分梯度投影(NLTV-GPSR)算法测量得到的归一化均方误差(NMSE)和峰值信噪比(PSNR)的改善是显著的。此外,所提出算法增益的对比度噪声比(CNR)差异显著,且与高剂量CBCT相当。所提出的方法成功地将噪声退化的低剂量CBCT投影恢复到高剂量投影质量。与基于FDK的方法相比,这一结果对重建结果有相当大的改进。此外,重建时间的显著减少使得所提出的算法更具吸引力。这证明了所提出算法在放射治疗临床实践中的潜在应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6455/7056884/8893441b6794/fonc-10-00242-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验