Center for Advanced Radiotherapy Technologies, University of California, San Diego, La Jolla, CA 92037-0843, USA.
Phys Med Biol. 2011 Jul 7;56(13):3787-807. doi: 10.1088/0031-9155/56/13/004. Epub 2011 May 31.
The x-ray imaging dose from serial cone-beam computed tomography (CBCT) scans raises a clinical concern in most image-guided radiation therapy procedures. It is the goal of this paper to develop a fast graphic processing unit (GPU)-based algorithm to reconstruct high-quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. For this purpose, we have developed an iterative tight-frame (TF)-based CBCT reconstruction algorithm. A condition that a real CBCT image has a sparse representation under a TF basis is imposed in the iteration process as regularization to the solution. To speed up the computation, a multi-grid method is employed. Our GPU implementation has achieved high computational efficiency and a CBCT image of resolution 512 × 512 × 70 can be reconstructed in ∼5 min. We have tested our algorithm on a digital NCAT phantom and a physical Catphan phantom. It is found that our TF-based algorithm is able to reconstruct CBCT in the context of undersampling and low mAs levels. We have also quantitatively analyzed the reconstructed CBCT image quality in terms of the modulation-transfer function and contrast-to-noise ratio under various scanning conditions. The results confirm the high CBCT image quality obtained from our TF algorithm. Moreover, our algorithm has also been validated in a real clinical context using a head-and-neck patient case. Comparisons of the developed TF algorithm and the current state-of-the-art TV algorithm have also been made in various cases studied in terms of reconstructed image quality and computation efficiency.
在大多数图像引导放射治疗程序中,连续锥形束计算机断层扫描 (CBCT) 扫描的 X 射线成像剂量引起了临床关注。本文的目的是开发一种快速基于图形处理单元 (GPU) 的算法,以便从欠采样和噪声投影数据重建高质量的 CBCT 图像,从而降低成像剂量。为此,我们开发了一种基于迭代紧框架 (TF) 的 CBCT 重建算法。在迭代过程中,施加一个条件,即真实的 CBCT 图像在 TF 基下具有稀疏表示,作为对解的正则化。为了加速计算,采用了多网格方法。我们的 GPU 实现具有很高的计算效率,分辨率为 512×512×70 的 CBCT 图像可以在约 5 分钟内重建。我们已经在数字 NCAT 体模和物理 Catphan 体模上测试了我们的算法。结果表明,我们的基于 TF 的算法能够在欠采样和低 mAs 水平下重建 CBCT。我们还根据各种扫描条件下的调制传递函数和对比度噪声比,对重建的 CBCT 图像质量进行了定量分析。结果证实了我们的 TF 算法获得的高质量 CBCT 图像。此外,我们的算法还在头部和颈部患者病例的实际临床环境中得到了验证。还针对所研究的各种情况,比较了开发的 TF 算法和当前最先进的 TV 算法在重建图像质量和计算效率方面的性能。