Suppr超能文献

不同的遗传算法和专业化的进化:对模拟神经机器人群体的研究。

Different genetic algorithms and the evolution of specialization: a study with groups of simulated neural robots.

机构信息

Consiglio Nazionale delle Ricerche, Università degli Studi dell'Aquila, Roma, Italy.

出版信息

Artif Life. 2013 Spring;19(2):221-53. doi: 10.1162/ARTL_a_00106. Epub 2013 Mar 20.

Abstract

Organisms that live in groups, from microbial symbionts to social insects and schooling fish, exhibit a number of highly efficient cooperative behaviors, often based on role taking and specialization. These behaviors are relevant not only for the biologist but also for the engineer interested in decentralized collective robotics. We address these phenomena by carrying out experiments with groups of two simulated robots controlled by neural networks whose connection weights are evolved by using genetic algorithms. These algorithms and controllers are well suited to autonomously find solutions for decentralized collective robotic tasks based on principles of self-organization. The article first presents a taxonomy of role-taking and specialization mechanisms related to evolved neural network controllers. Then it introduces two cooperation tasks, which can be accomplished by either role taking or specialization, and uses these tasks to compare four different genetic algorithms to evaluate their capacity to evolve a suitable behavioral strategy, which depends on the task demands. Interestingly, only one of the four algorithms, which appears to have more biological plausibility, is capable of evolving role taking or specialization when they are needed. The results are relevant for both collective robotics and biology, as they can provide useful hints on the different processes that can lead to the emergence of specialization in robots and organisms.

摘要

从微生物共生体到社会性昆虫和群体洄游鱼类等生活在群体中的生物,表现出许多高效的合作行为,这些行为通常基于角色承担和专业化。这些行为不仅与生物学家有关,也与对分散式集体机器人技术感兴趣的工程师有关。我们通过使用神经网络控制的两个模拟机器人进行实验来解决这些现象,这些机器人的连接权重是通过遗传算法进化而来的。这些算法和控制器非常适合基于自组织原则为分散式集体机器人任务自动找到解决方案。本文首先提出了与进化神经网络控制器相关的角色承担和专业化机制的分类法。然后介绍了两个可以通过角色承担或专业化来完成的合作任务,并使用这些任务比较了四种不同的遗传算法,以评估它们进化出适合任务需求的行为策略的能力。有趣的是,只有一种算法,似乎具有更多的生物学合理性,能够在需要时进化出角色承担或专业化。这些结果与集体机器人技术和生物学都有关,因为它们可以为机器人和生物体中专业化的出现提供有用的线索。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验