Economou Nicoleta J, Zentner Isaac J, Lazo Edwin, Jakoncic Jean, Stojanoff Vivian, Weeks Stephen D, Grasty Kimberly C, Cocklin Simon, Loll Patrick J
Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
Acta Crystallogr D Biol Crystallogr. 2013 Apr;69(Pt 4):520-33. doi: 10.1107/S0907444912050469. Epub 2013 Mar 14.
Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a D-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein-peptide-antibiotic complex. The 2.05 Å resolution MBP-peptide-teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance.
多重耐药细菌感染通常用糖肽类抗生素如替考拉宁进行治疗。这种药物通过结合并隔离一种细胞壁前体(一种含D-丙氨酸的肽)来抑制细菌细胞壁的生物合成。采用载体蛋白策略,通过经由天然化学连接将细胞壁肽与麦芽糖结合蛋白(MBP)或泛素融合,随后使蛋白质-肽-抗生素复合物结晶,从而得到替考拉宁及其靶肽的复合物晶体。分辨率为2.05 Å的MBP-肽-替考拉宁结构表明,替考拉宁通过五个氢键和多个范德华相互作用的组合来识别其配体。将这种替考拉宁结构与未结合配体的替考拉宁结构进行比较,发现抗生素肽主链具有灵活性,这对配体识别具有重要意义。衍射实验揭示了X射线诱导抗生素第六个氨基酸的脱氯现象;结果表明,替考拉宁比其他类似抗生素对辐射更敏感,并且配体结合会增加辐射敏感性。从这种新的替考拉宁结构中获得的见解可能有助于开发旨在克服细菌耐药性的下一代抗菌药物。