Nano-Bio Spectroscopy Group and ETSF Scientific Development Center, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 San Sebastian, Spain.
Chemphyschem. 2013 May 10;14(7):1363-76. doi: 10.1002/cphc.201201007. Epub 2013 Mar 20.
Molecular absorption and photoelectron spectra can be efficiently predicted with real-time time-dependent density functional theory. We show herein how these techniques can be easily extended to study time-resolved pump-probe experiments, in which a system response (absorption or electron emission) to a probe pulse is measured in an excited state. This simulation tool helps with the interpretation of fast-evolving attosecond time-resolved spectroscopic experiments, in which electronic motion must be followed at its natural timescale. We show how the extra degrees of freedom (pump-pulse duration, intensity, frequency, and time delay), which are absent in a conventional steady-state experiment, provide additional information about electronic structure and dynamics that improve characterization of a system. As an extension of this approach, time-dependent 2D spectroscopy can also be simulated, in principle, for large-scale structures and extended systems.
分子吸收和光电子能谱可以通过实时时间相关的密度泛函理论有效地预测。本文展示了如何将这些技术轻松扩展到研究时间分辨泵浦探测实验中,在该实验中,测量激发态下系统对探测脉冲的响应(吸收或电子发射)。这种模拟工具有助于解释快速演化的阿秒时间分辨光谱实验,其中必须在其自然时间尺度上跟踪电子运动。我们展示了在传统稳态实验中不存在的额外自由度(泵浦脉冲持续时间、强度、频率和时间延迟)如何提供有关电子结构和动力学的附加信息,从而改善对系统的表征。作为该方法的扩展,原则上也可以模拟具有大尺度结构和扩展系统的时变二维光谱。