Suppr超能文献

表面修饰纳米颗粒与癌细胞脂质的选择性物理相互作用可提高肿瘤靶向性和基因治疗效果。

Selective biophysical interactions of surface modified nanoparticles with cancer cell lipids improve tumor targeting and gene therapy.

机构信息

Department of Biomedical Engineering, Lerner Research Institute, Cleveland, OH 44195, United States.

出版信息

Cancer Lett. 2013 Jul 1;334(2):228-36. doi: 10.1016/j.canlet.2013.03.011. Epub 2013 Mar 21.

Abstract

Targeting gene- or drug-loaded nanoparticles (NPs) to tumors and ensuring their intratumoral retention after systemic administration remain key challenges to improving the efficacy of NP-based therapeutics. Here, we investigate a novel targeting approach that exploits changes in lipid metabolism and cell membrane biophysics that occur during malignancy. We hypothesized that modifications to the surface of NPs that preferentially increase their biophysical interaction with the membrane lipids of cancer cells will improve intratumoral retention and in vivo efficacy upon delivery of NPs loaded with a therapeutic gene. We have demonstrated that different surfactants, incorporated onto the NPs' surface, affect the biophysical interactions of NPs with the lipids of cancer cells and normal endothelial cells. NPs surface modified with didodecyldimethylammoniumbromide (DMAB) demonstrated greater interaction with cancer cell lipids, which was 6.7-fold greater than with unmodified NPs and 5.5-fold greater than with endothelial cell lipids. This correlated with increased uptake of DMAB-modified NPs with incubation time by cancer cells compared to other formulations of NPs and to uptake by endothelial cells. Upon systemic injection, DMAB-NPs demonstrated a 4.6-fold increase in tumor accumulation compared to unmodified NPs which also correlated to improved efficacy of p53 gene therapy. Characterization of the biophysical interactions between NPs and lipid membranes of tumors or other diseased tissues/organs may hold promise for engineering targeted delivery of therapeutics.

摘要

靶向基因或药物负载的纳米颗粒 (NPs) 至肿瘤,并确保其在全身给药后在肿瘤内保留,这仍然是提高基于 NPs 的治疗效果的关键挑战。在这里,我们研究了一种新的靶向方法,该方法利用了恶性肿瘤过程中发生的脂质代谢和细胞膜生物物理学变化。我们假设,通过改变 NPs 的表面,使其优先增加与癌细胞膜脂质的生物物理相互作用,将改善 NP 负载治疗基因的肿瘤内保留和体内疗效。我们已经证明,不同的表面活性剂,整合到 NPs 的表面上,会影响 NPs 与癌细胞和正常内皮细胞的脂质的生物物理相互作用。用双十二烷基二甲基溴化铵 (DMAB) 修饰的 NPs 与癌细胞脂质的相互作用更大,是未修饰 NPs 的 6.7 倍,是内皮细胞脂质的 5.5 倍。这与与其他 NPs 制剂相比,DMAB 修饰的 NPs 在孵育时间内被癌细胞的摄取增加,以及与内皮细胞的摄取增加有关。全身注射后,与未修饰的 NPs 相比,DMAB-NPs 在肿瘤中的积累增加了 4.6 倍,这也与 p53 基因治疗的疗效提高有关。对 NPs 与肿瘤或其他病变组织/器官的脂质膜之间的生物物理相互作用进行表征,可能为靶向治疗药物的传递提供希望。

相似文献

1
Selective biophysical interactions of surface modified nanoparticles with cancer cell lipids improve tumor targeting and gene therapy.
Cancer Lett. 2013 Jul 1;334(2):228-36. doi: 10.1016/j.canlet.2013.03.011. Epub 2013 Mar 21.
9
Lung cancer therapy using doxorubicin and curcumin combination: Targeted prodrug based, pH sensitive nanomedicine.
Biomed Pharmacother. 2019 Apr;112:108614. doi: 10.1016/j.biopha.2019.108614. Epub 2019 Feb 21.

引用本文的文献

1
Nanoparticle Properties for Delivery to Cartilage: The Implications of Disease State, Synovial Fluid, and Off-Target Uptake.
Mol Pharm. 2019 Feb 4;16(2):469-479. doi: 10.1021/acs.molpharmaceut.7b00484. Epub 2018 Dec 31.
2
Inhibition of bone loss with surface-modulated, drug-loaded nanoparticles in an intraosseous model of prostate cancer.
J Control Release. 2016 Jun 28;232:83-92. doi: 10.1016/j.jconrel.2016.04.019. Epub 2016 Apr 15.
3
Advancements in the delivery of epigenetic drugs.
Expert Opin Drug Deliv. 2015;12(9):1501-12. doi: 10.1517/17425247.2015.1021678. Epub 2015 Mar 5.
4
Modulation of the tumor microenvironment for cancer treatment: a biomaterials approach.
J Funct Biomater. 2015 Feb 17;6(1):81-103. doi: 10.3390/jfb6010081.
7
Applications of nanoparticles in the detection and treatment of kidney diseases.
Adv Chronic Kidney Dis. 2013 Nov;20(6):454-65. doi: 10.1053/j.ackd.2013.07.006.
8
Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles.
Adv Drug Deliv Rev. 2013 Nov;65(13-14):1686-98. doi: 10.1016/j.addr.2013.09.004. Epub 2013 Sep 19.

本文引用的文献

1
Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities.
Science. 2012 Nov 16;338(6109):903-10. doi: 10.1126/science.1226338.
2
A physical model for the size-dependent cellular uptake of nanoparticles modified with cationic surfactants.
Int J Nanomedicine. 2012;7:3547-54. doi: 10.2147/IJN.S32188. Epub 2012 Jul 10.
3
Immunotoxicity derived from manipulating leukocytes with lipid-based nanoparticles.
Adv Drug Deliv Rev. 2012 Dec;64(15):1738-48. doi: 10.1016/j.addr.2012.06.013. Epub 2012 Jul 20.
5
Lipid metabolism in cancer.
FEBS J. 2012 Aug;279(15):2610-23. doi: 10.1111/j.1742-4658.2012.08644.x. Epub 2012 Jul 3.
6
Inhibition of tumor angiogenesis and growth by nanoparticle-mediated p53 gene therapy in mice.
Cancer Gene Ther. 2012 Aug;19(8):530-7. doi: 10.1038/cgt.2012.26. Epub 2012 May 18.
7
Nanoparticle-mediated p53 gene therapy for tumor inhibition.
Drug Deliv Transl Res. 2011 Feb;1(1):43-52. doi: 10.1007/s13346-010-0008-9.
8
The effect of cholesterol domains on PEGylated liposomal gene delivery in vitro.
Ther Deliv. 2011 Apr;2(4):451-60. doi: 10.4155/tde.11.13.
9
The music of lipids: how lipid composition orchestrates cellular behaviour.
Acta Oncol. 2012 Mar;51(3):301-10. doi: 10.3109/0284186X.2011.643823. Epub 2012 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验