Suppr超能文献

细菌精氨酸激酶的特性与起源。

Characterization and origin of bacterial arginine kinases.

机构信息

Laboratory of Biochemistry, Faculty of Science, Kochi University, Kochi 780-8520, Japan.

出版信息

Int J Biol Macromol. 2013 Jun;57:273-7. doi: 10.1016/j.ijbiomac.2013.02.023. Epub 2013 Mar 21.

Abstract

Arginine kinase (AK) plays a key role in ATP buffering systems of tissues and nerves that display high and variable rates of ATP turnover and is widely distributed in invertebrate animals. The enzyme is also found in unicellular organisms, protists and bacteria, but its occurrence is intermittent among species. The AK sequence is structurally divided into two domains, N- and C-terminal domains. The purpose of this study is to clarify the origin of bacterial AK. A search of over 1700 bacterial genomic sequences revealed eight species from Deinococcus-Thermus (Oceanithermus profundus) and Proteobacteria (Ahrensia sp., Nitratifractor salsuginis, Desulfobacterium autotrophicum, Desulfotalea psychrophila, Myxococcus xanthus, Moritella sp. and Sulfurovum sp.) possessing a complete AK sequence homologue. In addition, we searched another key protein that is homologous with that of the C-terminal domain of AK (mcsB). The mcsB is more widely distributed in about 150 species across at least nine bacterial genera. In agreement with the report by other authors, a phylogenetic tree of AK homologues shows that the eight species are separated into two clusters: cluster-A with AKs from ciliates Tetrahymena and Sterkiella and a porifera and the larger cluster-B, including most of the invertebrate AKs. We cloned and expressed the AK from Sulfurovum lithotrophicum in cluster-A and determined its enzymatic properties. Bacterial AKs were characterized as having the highest catalytic efficiency among known AKs, although there was a marked difference in kcat values for cluster-A and -B bacterial AKs. These observations suggest that bacterial AKs in cluster-B may be the prototype of invertebrate AKs. On the other hand, it appears that bacterial AKs in cluster-A diverged at an early stage of bacterial evolution after the appearance of AK, or introduced by horizontal gene transfer.

摘要

精氨酸激酶(AK)在组织和神经的 ATP 缓冲系统中发挥关键作用,这些组织和神经具有高且可变的 ATP 周转率,并且广泛分布于无脊椎动物中。该酶也存在于单细胞生物、原生动物和细菌中,但在物种间的出现是间歇性的。AK 序列在结构上分为两个结构域,N-和 C-末端结构域。本研究旨在阐明细菌 AK 的起源。对超过 1700 个细菌基因组序列的搜索揭示了来自 Deinococcus-Thermus(深海栖热菌)和变形菌门(Ahrensia sp.,硝化螺旋菌,脱硫硫杆菌,嗜冷脱硫菌,粘球菌,Moritella sp.和 Sulfurovum sp.)的 8 个物种具有完整的 AK 序列同源物。此外,我们还搜索了与 AK 的 C-末端结构域同源的另一个关键蛋白(mcsB)。mcsB 在至少 9 个细菌属的约 150 个物种中分布更为广泛。与其他作者的报告一致,AK 同源物的系统发育树显示,这 8 个物种分为两个簇:簇-A 包括纤毛虫 Tetrahymena 和 Sterkiella 以及多孔动物和更大的簇-B,其中包括大多数无脊椎动物 AK。我们克隆并表达了簇-A 中的 Sulfurovum lithotrophicum AK,并测定了其酶学特性。细菌 AK 的特征是具有已知 AK 中最高的催化效率,尽管簇-A 和簇-B 细菌 AK 的 kcat 值有明显差异。这些观察结果表明,簇-B 中的细菌 AK 可能是无脊椎动物 AK 的原型。另一方面,似乎簇-A 中的细菌 AK 在 AK 出现后细菌进化的早期就发生了分化,或者是通过水平基因转移引入的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验