Sarangi Ritimukta
Stanford Synchrotron Radiation Lightsource, Stanford National Accelerator Laboratory, MS 69, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
Coord Chem Rev. 2013 Jan 15;257(2):459-472. doi: 10.1016/j.ccr.2012.06.024. Epub 2012 Jul 3.
Metal K-edge X-ray absorption spectroscopy (XAS) has been extensively applied to bioinorganic chemistry to obtain geometric structure information on metalloprotein and biomimetic model complex active sites by analyzing the higher energy extended X-ray absorption fine structure (EXAFS) region of the spectrum. In recent years, focus has been on developing methodologies to interpret the lower energy K-pre-edge and rising-edge regions (XANES) and using it for electronic structure determination in complex bioinorganic systems. In this review, the evolution and progress of 3d-transition metal K-pre-edge and rising-edge methodology development is presented with particular focus on applications to bioinorganic systems. Applications to biomimetic transition metal-O intermediates (M = Fe, Co, Ni and Cu) are reviewed, which demonstrate the power of the method as an electronic structure determination technique and its impact in understanding the role of supporting ligands in tuning the electronic configuration of transition metal-O systems.
金属K边X射线吸收光谱(XAS)已广泛应用于生物无机化学领域,通过分析光谱中能量较高的扩展X射线吸收精细结构(EXAFS)区域,获取金属蛋白和仿生模型复合物活性位点的几何结构信息。近年来,重点在于开发解释能量较低的K边前峰和上升沿区域(XANES)的方法,并将其用于复杂生物无机体系的电子结构测定。在本综述中,介绍了3d过渡金属K边前峰和上升沿方法发展的演变与进展,特别关注其在生物无机体系中的应用。综述了该方法在仿生过渡金属 - 氧中间体(M = Fe、Co、Ni和Cu)中的应用,这些应用展示了该方法作为一种电子结构测定技术的强大功能及其在理解支撑配体对过渡金属 - 氧体系电子构型调节作用方面的影响。