PRES LUNAM, Université du Maine, Institut Universitaire Mer et Littoral FR-3473 CNRS, EA 2160 Mer Molécules Santé, UFR Sciences et Techniques, 72085 Le Mans Cedex, IUT Génie Biologique, 53020 Laval Cedex, France.
Phytochemistry. 2013 Jun;90:43-9. doi: 10.1016/j.phytochem.2013.02.014. Epub 2013 Mar 22.
The marine flagellate Pavlova lutheri is a microalga known to be rich in long-chain polyunsaturated fatty acids (LC-PUFAs) and able to produce large amounts of n-3 fatty acids, such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). As no previous study had attempted to measure the metabolic step of fatty acid synthesis in this alga, we used radiolabeled precursors to explore the various desaturation and elongation steps involved in LC-PUFA biosynthesis pathways. The incorporation of (14)C-labeled palmitic ([1-(14)C] 16:0) and dihomo-γ-linolenic ([1-(14)C] 20:3n-6) acids as ammonium salts within the cells was monitored during incubation periods lasting 3, 10 or 24h. Total lipids and each of the fatty acids were also monitored during these incubation periods. A decrease in the availability and/or accessibility of the radiolabeled substrates was observed over the incubation time. This decrease with incubation time observed using [1-(14)C] 16:0 and [1-(14)C] 20:3n-6 as substrates was used to monitor the conversion of (14)C-labeled arachidonic acid ([1-(14)C] 20:4n-6) into longer and more unsaturated fatty acids, such as 20:5n-3 and 22:6n-3, over shorter incubation times (1 and 3h). A metabolic relationship between the n-6 and n-3 fatty acid series was demonstrated in P. lutheri by measuring the Δ17-desaturation activity involved in the conversion of eicosatetraenoic acid to 20:5n-3. Our findings suggest that the biosynthesis pathway leading to n-3 LC-PUFA involves fatty acids of the n-6 family, which act as precursors in the biosynthesis of 20:5n-3 and 22:6n-3. This preliminary work provides a method for studying microalgal LC-PUFA biosynthesis pathways and desaturase and elongase activities in vivo using externally-radiolabeled fatty acid precursors as substrates. The use of the [1-(14)C] 20:4n-6 substrate also highlighted the relationships between the n-6 and the n-3 fatty acid series (e.g. Δ17-desaturation), and the final elongation and desaturation steps required for n-3 LC-PUFA formation in P. lutheri.
海洋鞭毛藻巴氏光甲藻是一种富含长链多不饱和脂肪酸(LC-PUFA)的微藻,能够大量生产 n-3 脂肪酸,如二十碳五烯酸(EPA,20:5n-3)和二十二碳六烯酸(DHA,22:6n-3)。由于以前没有研究试图测量这种藻类中脂肪酸合成的代谢步骤,我们使用放射性标记的前体来探索 LC-PUFA 生物合成途径中涉及的各种去饱和和延伸步骤。在持续 3、10 或 24 小时的孵育期间,监测细胞内(14)C 标记的棕榈酸([1-(14)C] 16:0)和二高-γ-亚麻酸([1-(14)C] 20:3n-6)作为铵盐的掺入情况。在这些孵育期间还监测了总脂质和每种脂肪酸。随着孵育时间的延长,观察到放射性标记底物的可用性和/或可及性下降。使用 [1-(14)C] 16:0 和 [1-(14)C] 20:3n-6 作为底物观察到的这种随孵育时间的下降被用于监测较短孵育时间(1 和 3 小时)内(14)C 标记的花生四烯酸([1-(14)C] 20:4n-6)向更长和更不饱和脂肪酸(如 20:5n-3 和 22:6n-3)的转化。通过测量涉及二十碳四烯酸向 20:5n-3 转化的 Δ17 去饱和活性,在巴氏光甲藻中证明了 n-6 和 n-3 脂肪酸系列之间存在代谢关系。我们的研究结果表明,导致 n-3LC-PUFA 的生物合成途径涉及 n-6 家族的脂肪酸,这些脂肪酸作为 20:5n-3 和 22:6n-3 生物合成的前体。这项初步工作提供了一种使用外部放射性标记脂肪酸前体作为底物在体内研究微藻 LC-PUFA 生物合成途径和去饱和酶和延伸酶活性的方法。使用 [1-(14)C] 20:4n-6 底物还突出了 n-6 和 n-3 脂肪酸系列(例如 Δ17 去饱和)之间的关系,以及巴氏光甲藻中 n-3LC-PUFA 形成所需的最终延伸和去饱和步骤。