Suppr超能文献

基于 GPU 的环形阵实时容积超声图像重建。

GPU-based real-time volumetric ultrasound image reconstruction for a ring array.

机构信息

Edward L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA.

出版信息

IEEE Trans Med Imaging. 2013 Jul;32(7):1258-64. doi: 10.1109/TMI.2013.2253117. Epub 2013 Mar 18.

Abstract

Synthetic phased array (SPA) beamforming with Hadamard coding and aperture weighting is an optimal option for real-time volumetric imaging with a ring array, a particularly attractive geometry in intracardiac and intravascular applications. However, the imaging frame rate of this method is limited by the immense computational load required in synthetic beamforming. For fast imaging with a ring array, we developed graphics processing unit (GPU)-based, real-time image reconstruction software that exploits massive data-level parallelism in beamforming operations. The GPU-based software reconstructs and displays three cross-sectional images at 45 frames per second (fps). This frame rate is 4.5 times higher than that for our previously-developed multi-core CPU-based software. In an alternative imaging mode, it shows one B-mode image rotating about the axis and its maximum intensity projection, processed at a rate of 104 fps . This paper describes the image reconstruction procedure on the GPU platform and presents the experimental images obtained using this software.

摘要

合成相控阵(SPA)波束形成与 Hadamard 编码和孔径加权是具有环形阵列的实时容积成像的最佳选择,环形阵列在心脏内和血管内应用中具有特别吸引人的几何形状。然而,这种方法的成像帧率受到合成波束形成所需的巨大计算负载的限制。为了实现环形阵列的快速成像,我们开发了基于图形处理单元(GPU)的实时图像重建软件,该软件利用了波束形成操作中的大规模数据级并行性。基于 GPU 的软件以每秒 45 帧(fps)重建和显示三个横截面图像。该帧率比我们之前开发的多核 CPU 软件高 4.5 倍。在另一种成像模式中,它显示一个围绕其轴旋转的 B 模式图像及其最大强度投影,以每秒 104 帧的速度处理。本文描述了 GPU 平台上的图像重建过程,并展示了使用该软件获得的实验图像。

相似文献

1
GPU-based real-time volumetric ultrasound image reconstruction for a ring array.
IEEE Trans Med Imaging. 2013 Jul;32(7):1258-64. doi: 10.1109/TMI.2013.2253117. Epub 2013 Mar 18.
2
Volumetric real-time imaging using a CMUT ring array.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Jun;59(6):1201-11. doi: 10.1109/TUFFC.2012.2310.
3
Software beamforming: comparison between a phased array and synthetic transmit aperture.
Ultrason Imaging. 2011 Apr;33(2):109-18. doi: 10.1177/016173461103300202.
4
GPU-accelerated Kernel Regression Reconstruction for Freehand 3D Ultrasound Imaging.
Ultrason Imaging. 2017 Jul;39(4):240-259. doi: 10.1177/0161734616689464. Epub 2017 Mar 1.
5
GPU-based minimum variance beamformer for synthetic aperture imaging of the eye.
Ultrasound Med Biol. 2015 Mar;41(3):871-83. doi: 10.1016/j.ultrasmedbio.2014.11.005. Epub 2015 Jan 28.
6
Ultrasound research scanner for real-time synthetic aperture data acquisition.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 May;52(5):881-91. doi: 10.1109/tuffc.2005.1503974.
7
Transform-Based Channel-Data Compression to Improve the Performance of a Real-Time GPU-Based Software Beamformer.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Mar;63(3):369-80. doi: 10.1109/TUFFC.2016.2519441. Epub 2016 Jan 19.
8
GPU-accelerated Double-stage Delay-multiply-and-sum Algorithm for Fast Photoacoustic Tomography Using LED Excitation and Linear Arrays.
Ultrason Imaging. 2019 Sep;41(5):301-316. doi: 10.1177/0161734619862488. Epub 2019 Jul 19.
9
Design of a Volumetric Imaging Sequence Using a Vantage-256 Ultrasound Research Platform Multiplexed With a 1024-Element Fully Sampled Matrix Array.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Feb;67(2):248-257. doi: 10.1109/TUFFC.2019.2942557. Epub 2019 Sep 19.
10
F-k Domain Imaging for Synthetic Aperture Sequential Beamforming.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Jan;63(1):60-71. doi: 10.1109/TUFFC.2015.2499839. Epub 2015 Nov 11.

引用本文的文献

1
Design of a Volumetric Imaging Sequence Using a Vantage-256 Ultrasound Research Platform Multiplexed With a 1024-Element Fully Sampled Matrix Array.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Feb;67(2):248-257. doi: 10.1109/TUFFC.2019.2942557. Epub 2019 Sep 19.
2
An FPGA-Based Backend System for Intravascular Photoacoustic and Ultrasound Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Jan;66(1):45-56. doi: 10.1109/TUFFC.2018.2881409. Epub 2018 Nov 14.
3
In-plane ultrasonic needle tracking using a fiber-optic hydrophone.
Med Phys. 2015 Oct;42(10):5983-91. doi: 10.1118/1.4931418.
5
Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Feb;61(2):239-50. doi: 10.1109/TUFFC.2014.6722610.

本文引用的文献

1
Volumetric real-time imaging using a CMUT ring array.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Jun;59(6):1201-11. doi: 10.1109/TUFFC.2012.2310.
2
GPU-based beamformer: fast realization of plane wave compounding and synthetic aperture imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Aug;58(8):1698-705. doi: 10.1109/TUFFC.2011.1999.
3
Ultrafast compound Doppler imaging: providing full blood flow characterization.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Jan;58(1):134-47. doi: 10.1109/TUFFC.2011.1780.
4
Three-dimensional photoacoustic imaging using a two-dimensional CMUT array.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Nov;56(11):2411-9. doi: 10.1109/TUFFc.2009.1329.
5
3-D ultrasound imaging using a forward-looking CMUT ring array for intravascular/intracardiac applications.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Jun;53(6):1202-11. doi: 10.1109/tuffc.2006.1642519.
6
Capacitive micromachined ultrasonic transducers: fabrication technology.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Dec;52(12):2242-58. doi: 10.1109/tuffc.2005.1563267.
7
Direct sampled I/Q beamforming for compact and very low-cost ultrasound imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Sep;51(9):1082-94. doi: 10.1109/tuffc.2004.1334841.
8
Optimizing the beam pattern of a forward-viewing ring-annular ultrasound array for intravascular imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2002 Dec;49(12):1652-64. doi: 10.1109/tuffc.2002.1159845.
9
Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?
IEEE Trans Ultrason Ferroelectr Freq Control. 2002 Nov;49(11):1596-610. doi: 10.1109/tuffc.2002.1049742.
10
Space-time encoding for high frame rate ultrasound imaging.
Ultrasonics. 2002 May;40(1-8):593-7. doi: 10.1016/s0041-624x(02)00179-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验