Edward L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA.
IEEE Trans Med Imaging. 2013 Jul;32(7):1258-64. doi: 10.1109/TMI.2013.2253117. Epub 2013 Mar 18.
Synthetic phased array (SPA) beamforming with Hadamard coding and aperture weighting is an optimal option for real-time volumetric imaging with a ring array, a particularly attractive geometry in intracardiac and intravascular applications. However, the imaging frame rate of this method is limited by the immense computational load required in synthetic beamforming. For fast imaging with a ring array, we developed graphics processing unit (GPU)-based, real-time image reconstruction software that exploits massive data-level parallelism in beamforming operations. The GPU-based software reconstructs and displays three cross-sectional images at 45 frames per second (fps). This frame rate is 4.5 times higher than that for our previously-developed multi-core CPU-based software. In an alternative imaging mode, it shows one B-mode image rotating about the axis and its maximum intensity projection, processed at a rate of 104 fps . This paper describes the image reconstruction procedure on the GPU platform and presents the experimental images obtained using this software.
合成相控阵(SPA)波束形成与 Hadamard 编码和孔径加权是具有环形阵列的实时容积成像的最佳选择,环形阵列在心脏内和血管内应用中具有特别吸引人的几何形状。然而,这种方法的成像帧率受到合成波束形成所需的巨大计算负载的限制。为了实现环形阵列的快速成像,我们开发了基于图形处理单元(GPU)的实时图像重建软件,该软件利用了波束形成操作中的大规模数据级并行性。基于 GPU 的软件以每秒 45 帧(fps)重建和显示三个横截面图像。该帧率比我们之前开发的多核 CPU 软件高 4.5 倍。在另一种成像模式中,它显示一个围绕其轴旋转的 B 模式图像及其最大强度投影,以每秒 104 帧的速度处理。本文描述了 GPU 平台上的图像重建过程,并展示了使用该软件获得的实验图像。