Suppr超能文献

使用 Vantage-256 超声研究平台与 1024 元全采样矩阵阵元复用设计容积成像序列。

Design of a Volumetric Imaging Sequence Using a Vantage-256 Ultrasound Research Platform Multiplexed With a 1024-Element Fully Sampled Matrix Array.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Feb;67(2):248-257. doi: 10.1109/TUFFC.2019.2942557. Epub 2019 Sep 19.

Abstract

Ultrasound imaging using a matrix array allows real-time multi-planar volumetric imaging. To enhance image quality, the matrix array should provide fast volumetric ultrasound imaging with spatially consistent focusing in the lateral and elevational directions. However, because of the significantly increased data size, dealing with massive and continuous data acquisition is a significant challenge. We have designed an imaging acquisition sequence that handles volumetric data efficiently using a single 256-channel Verasonics ultrasound research platform multiplexed with a 1024-element matrix array. The developed sequence has been applied for building an ultrasonic pupilometer. Our results demonstrate the capability of the developed approach for structural visualization of an ex vivo porcine eye and the temporal response of the modeled eye pupil with moving iris at the volume rate of 30 Hz. Our study provides a fundamental ground for researchers to establish their own volumetric ultrasound imaging platform and could stimulate the development of new volumetric ultrasound approaches and applications.

摘要

使用矩阵阵列为超声成像提供实时多平面容积成像。为了提高图像质量,矩阵阵 列应在横向和纵向方向提供快速的容积超声成像,并具有空间一致的聚焦。然而,由于数 据量显著增加,处理大量和连续的数据采集是一个重大挑战。我们设计了一种成像采集序 列,该序列使用单个 256 通道的 Verasonics 超声研究平台与 1024 元素矩阵阵列复用,高效地处理容积数据。所开发的序列已应用于构建超声瞳孔计。我们的结果证明了该方法在结 构可视化离体猪眼和模拟眼瞳孔的时间响应方面的能力,其虹膜运动的体积速率为 30 Hz。 我们的研究为研究人员建立自己的容积超声成像平台提供了基础,并可能激发新的容积超 声方法和应用的发展。

相似文献

1
Design of a Volumetric Imaging Sequence Using a Vantage-256 Ultrasound Research Platform Multiplexed With a 1024-Element Fully Sampled Matrix Array.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Feb;67(2):248-257. doi: 10.1109/TUFFC.2019.2942557. Epub 2019 Sep 19.
2
GPU-based real-time volumetric ultrasound image reconstruction for a ring array.
IEEE Trans Med Imaging. 2013 Jul;32(7):1258-64. doi: 10.1109/TMI.2013.2253117. Epub 2013 Mar 18.
3
A flexible annular-array imaging platform for micro-ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Jan;60(1):178-86. doi: 10.1109/TUFFC.2013.2548.
4
Volumetric real-time imaging using a CMUT ring array.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Jun;59(6):1201-11. doi: 10.1109/TUFFC.2012.2310.
6
A two-dimensional array for B-mode and volumetric imaging with multiplexed electrostrictive elements.
Ultrason Imaging. 1997 Oct;19(4):235-50. doi: 10.1177/016173469701900401.
7
A Multiplexed 32 × 32 2D Matrix Array Transducer for Flexible Sub-Aperture Volumetric Ultrasound Imaging.
IEEE Trans Biomed Eng. 2024 Mar;71(3):831-840. doi: 10.1109/TBME.2023.3319513. Epub 2024 Feb 26.
8
Development of a 64 channel ultrasonic high frequency linear array imaging system.
Ultrasonics. 2011 Dec;51(8):953-9. doi: 10.1016/j.ultras.2011.05.010. Epub 2011 May 27.
9
Volumetric ultrasound imaging using 2-D CMUT arrays.
IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Nov;50(11):1581-94. doi: 10.1109/tuffc.2003.1251142.
10
Design and Demonstration of a Configurable Imaging Platform for Combined Laser, Ultrasound, and Elasticity Imaging.
IEEE Trans Med Imaging. 2019 Jul;38(7):1622-1632. doi: 10.1109/TMI.2018.2889736. Epub 2018 Dec 27.

引用本文的文献

1
Ionizing radiation acoustic and ultrasound dual-modality imaging for visualization of dose on anatomical structures during radiotherapy.
Photoacoustics. 2025 Jun 12;44:100742. doi: 10.1016/j.pacs.2025.100742. eCollection 2025 Aug.
3
Patient-specific deep learning for 3D protoacoustic image reconstruction and dose verification in proton therapy.
Med Phys. 2024 Oct;51(10):7425-7438. doi: 10.1002/mp.17294. Epub 2024 Jul 9.
4
Hybrid-supervised deep learning for domain transfer 3D protoacoustic image reconstruction.
Phys Med Biol. 2024 Apr 3;69(8). doi: 10.1088/1361-6560/ad3327.
5
6
3-D H-scan ultrasound imaging of relative scatterer size using a matrix array transducer and sparse random aperture compounding.
Comput Biol Med. 2022 Dec;151(Pt B):106316. doi: 10.1016/j.compbiomed.2022.106316. Epub 2022 Nov 17.
7
3Ddose verification in prostate proton therapy with deep learning-based proton-acoustic imaging.
Phys Med Biol. 2022 Oct 27;67(21). doi: 10.1088/1361-6560/ac9881.
9
Synchronization of RF Data in Ultrasound Open Platforms (UOPs) for High-Accuracy and High-Resolution Photoacoustic Tomography Using the "Scissors" Programming Method.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Jun;69(6):1994-2000. doi: 10.1109/TUFFC.2022.3164371. Epub 2022 May 26.
10
Experimental Study of Aperiodic Plane Wave Imaging for Ultrafast 3-D Ultrasound Imaging.
IEEE Trans Biomed Eng. 2022 Aug;69(8):2679-2690. doi: 10.1109/TBME.2022.3152212. Epub 2022 Jul 18.

本文引用的文献

1
Imaging Performance for Two Row-Column Arrays.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Jul;66(7):1209-1221. doi: 10.1109/TUFFC.2019.2914348. Epub 2019 May 1.
2
Design and Demonstration of a Configurable Imaging Platform for Combined Laser, Ultrasound, and Elasticity Imaging.
IEEE Trans Med Imaging. 2019 Jul;38(7):1622-1632. doi: 10.1109/TMI.2018.2889736. Epub 2018 Dec 27.
3
Influence of Strategic Cortical Infarctions on Pupillary Function.
Front Neurol. 2018 Oct 29;9:916. doi: 10.3389/fneur.2018.00916. eCollection 2018.
4
Ultrasound Open Platforms for Next-Generation Imaging Technique Development.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jul;65(7):1078-1092. doi: 10.1109/TUFFC.2018.2844560.
5
Experimental 3-D Ultrasound Imaging with 2-D Sparse Arrays using Focused and Diverging Waves.
Sci Rep. 2018 Jun 14;8(1):9108. doi: 10.1038/s41598-018-27490-2.
6
Freehand 3-D Ultrasound Imaging: A Systematic Review.
Ultrasound Med Biol. 2017 Oct;43(10):2099-2124. doi: 10.1016/j.ultrasmedbio.2017.06.009. Epub 2017 Jul 14.
7
Ultrasonic Shear Wave Elasticity Imaging Sequencing and Data Processing Using a Verasonics Research Scanner.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Jan;64(1):164-176. doi: 10.1109/TUFFC.2016.2614944.
8
High-frame-rate echocardiography using diverging transmit beams and parallel receive beamforming.
J Med Ultrason (2001). 2011 Jul;38(3):129-40. doi: 10.1007/s10396-011-0304-0. Epub 2011 May 7.
10
Plane wave compounding based on a joint transmitting-receiving adaptive beamformer.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Aug;62(8):1440-52. doi: 10.1109/TUFFC.2014.006934.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验