Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220G, Indianapolis, IN, 46202, USA.
J Bone Miner Metab. 2013 Sep;31(5):520-32. doi: 10.1007/s00774-013-0449-6. Epub 2013 Mar 26.
Bone is a dynamic tissue under constant remodeling in response to various signals including mechanical loading. A lack of proper mechanical loading induces disuse osteoporosis that reduces bone mass and structural integrity. The β-catenin signaling together with a network of GTPases is known to play a primary role in load-driven bone formation, but little is known about potential interactions of β-catenin signaling and GTPases in bone loss. In this study, we addressed a question: Does unloading suppress an activation level of RhoA GTPase and β-catenin signaling in osteoblasts? If yes, what is the role of RhoA GTPase and actin filaments in osteoblasts in regulating β-catenin signaling? Using a fluorescence resonance energy transfer (FRET) technique with a biosensor for RhoA together with a fluorescent T cell factor/lymphoid enhancer factor (TCF/LEF) reporter, we examined the effects of clinostat-driven simulated unloading. The results revealed that both RhoA activity and TCF/LEF activity were downregulated by unloading. Reduction in RhoA activity was correlated to a decrease in cytoskeletal organization of actin filaments. Inhibition of β-catenin signaling blocked unloading-induced RhoA suppression, and dominant negative RhoA inhibited TCF/LEF suppression. On the other hand, a constitutively active RhoA enhanced unloading-induced reduction of TCF/LEF activity. The TCF/LEF suppression by unloading was enhanced by co-culture with osteocytes, but it was independent on the organization of actin filaments, myosin II activity, or a myosin light chain kinase. Collectively, the results suggest that β-catenin signaling is required for unloading-driven regulation of RhoA, and RhoA, but not actin cytoskeleton or intracellular tension, mediates the responsiveness of β-catenin signaling to unloading.
骨骼是一种在各种信号(包括机械加载)的作用下不断进行重塑的动态组织。缺乏适当的机械加载会导致废用性骨质疏松,从而降低骨量和结构完整性。β-连环蛋白信号与 GTPase 网络一起,被认为在负载驱动的骨形成中发挥主要作用,但关于β-连环蛋白信号与 GTPase 在骨丢失中的潜在相互作用知之甚少。在这项研究中,我们提出了一个问题:去负荷是否会抑制成骨细胞中 RhoA GTPase 和 β-连环蛋白信号的激活水平?如果是,RhoA GTPase 和肌动蛋白丝在成骨细胞中调节β-连环蛋白信号的作用是什么?我们使用 RhoA 的生物传感器与荧光 T 细胞因子/淋巴增强因子(TCF/LEF)报告基因的荧光共振能量转移(FRET)技术,检查了旋转器驱动的模拟去负荷的影响。结果表明,RhoA 活性和 TCF/LEF 活性都被去负荷下调。RhoA 活性的降低与肌动蛋白丝细胞骨架组织的减少相关。β-连环蛋白信号的抑制阻断了去负荷诱导的 RhoA 抑制,而显性负性 RhoA 抑制了 TCF/LEF 的抑制。另一方面,组成型激活的 RhoA 增强了去负荷诱导的 TCF/LEF 活性的降低。与成骨细胞共培养增强了去负荷引起的 TCF/LEF 抑制,但与肌动蛋白丝的组织、肌球蛋白 II 活性或肌球蛋白轻链激酶无关。总的来说,这些结果表明,β-连环蛋白信号对于去负荷驱动的 RhoA 调节是必需的,而 RhoA 而不是肌动蛋白细胞骨架或细胞内张力,介导了β-连环蛋白信号对去负荷的反应性。