Suppr超能文献

量化改变环境湿度对声带表面液离子组成的影响。

Quantifying the effects of altering ambient humidity on ionic composition of vocal fold surface fluid.

机构信息

Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, USA.

出版信息

Laryngoscope. 2013 Jul;123(7):1725-8. doi: 10.1002/lary.23924. Epub 2013 Mar 25.

Abstract

OBJECTIVES/HYPOTHESIS: Vocal fold surface fluid (VFSF) is important in hydration and defense of underlying epithelial cells. The objective of this study was to quantify changes in the ionic composition of VFSF after altering the humidity of inhaled air. We tested the hypothesis that low humidity exposure would increase the concentration of VFSF sodium (Na(+)) and chloride (Cl(-)) ions but that high humidity exposure would decrease the concentration of VFSF Na(+) and Cl(-) ions as compared to the low humidity challenge.

STUDY DESIGN

Prospective design.

METHODS

Eighteen healthy adults participated in this study. VFSF was collected from each subject at baseline and following exposure to low humidity and high humidity environments. VFSF Na(+) concentration was assessed using inductively coupled plasma mass spectrometry. VFSF Cl(-) concentration was measured with indirect potentiometry. All analyses were completed by personnel blinded to the hypothesis being tested.

RESULTS

The low humidity environment increased Na(+) concentration in the majority of the subjects. Data for changes in Cl(-) concentrations were variable. Overall the data did not reach statistical significance (P > .05). Subjective impressions suggested that VFSF collection was more difficult in low humidity as compared to the high humidity and baseline conditions.

CONCLUSIONS

This study is the first attempt to measure the ionic concentration of VFSF. The results from the current study have important implications for future programmatic research quantifying the effects of pollutants and laryngopharyngeal reflux on VFSF composition, epithelial hydration, and vocal fold defense.

摘要

目的/假设:声带表面液(VFSF)对于维持上皮细胞的水合和防御功能至关重要。本研究的目的是量化吸入空气湿度变化后 VFSF 离子组成的变化。我们假设低湿度暴露会增加 VFSF 钠离子(Na(+))和氯离子(Cl(-))的浓度,而高湿度暴露会降低 VFSF Na(+)和 Cl(-)的浓度,与低湿度挑战相比。

研究设计

前瞻性设计。

方法

18 名健康成年人参与了这项研究。在基线以及暴露于低湿度和高湿度环境后,从每位受试者中收集 VFSF。使用电感耦合等离子体质谱法评估 VFSF Na(+)浓度。通过间接电位法测量 VFSF Cl(-)浓度。所有分析均由对正在测试的假设不知情的人员完成。

结果

低湿度环境增加了大多数受试者的 Na(+)浓度。Cl(-)浓度变化的数据存在差异。总体而言,数据未达到统计学意义(P >.05)。主观印象表明,与高湿度和基线条件相比,在低湿度环境下收集 VFSF 更为困难。

结论

本研究首次尝试测量 VFSF 的离子浓度。当前研究的结果对未来量化污染物和喉咽反流对 VFSF 组成、上皮水合和声带防御影响的计划研究具有重要意义。

相似文献

1
Quantifying the effects of altering ambient humidity on ionic composition of vocal fold surface fluid.
Laryngoscope. 2013 Jul;123(7):1725-8. doi: 10.1002/lary.23924. Epub 2013 Mar 25.
2
Vocal folds detect ionic perturbations on the luminal surface: an in vitro investigation.
J Voice. 2008 Jul;22(4):408-19. doi: 10.1016/j.jvoice.2006.11.005. Epub 2007 Feb 5.
4
Influence of obligatory mouth breathing, during realistic activities, on voice measures.
J Voice. 2012 Nov;26(6):813.e9-13. doi: 10.1016/j.jvoice.2012.03.007. Epub 2012 Aug 24.
5
The Interaction of Surface Hydration and Vocal Loading on Voice Measures.
J Voice. 2017 Mar;31(2):211-217. doi: 10.1016/j.jvoice.2016.07.005. Epub 2016 Aug 10.
6
Role for ion transport in porcine vocal fold epithelial defense to acid challenge.
Otolaryngol Head Neck Surg. 2012 Feb;146(2):272-8. doi: 10.1177/0194599811428273. Epub 2011 Nov 15.
7
8
Hypertonic challenge to porcine vocal folds: effects on epithelial barrier function.
Otolaryngol Head Neck Surg. 2010 Jan;142(1):79-84. doi: 10.1016/j.otohns.2009.09.011. Epub 2009 Nov 22.
9
The cystic fibrosis transmembrane conductance regulator and chloride-dependent ion fluxes of ovine vocal fold epithelium.
J Speech Lang Hear Res. 2009 Jun;52(3):745-54. doi: 10.1044/1092-4388(2008/07-0192). Epub 2008 Sep 19.
10
A meta-analysis of outcomes of hydration intervention on phonation threshold pressure.
J Voice. 2010 Nov;24(6):637-43. doi: 10.1016/j.jvoice.2009.06.001. Epub 2010 Apr 1.

引用本文的文献

1
Climate, vocal folds, and tonal languages: Connecting the physiological and geographic dots.
Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1322-7. doi: 10.1073/pnas.1417413112. Epub 2015 Jan 20.

本文引用的文献

1
Hypertonic challenge to porcine vocal folds: effects on epithelial barrier function.
Otolaryngol Head Neck Surg. 2010 Jan;142(1):79-84. doi: 10.1016/j.otohns.2009.09.011. Epub 2009 Nov 22.
2
A patient-specific in silico model of inflammation and healing tested in acute vocal fold injury.
PLoS One. 2008 Jul 30;3(7):e2789. doi: 10.1371/journal.pone.0002789.
3
Phonatory effects of airway dehydration: preliminary evidence for impaired compensation to oral breathing in individuals with a history of vocal fatigue.
J Speech Lang Hear Res. 2008 Dec;51(6):1494-506. doi: 10.1044/1092-4388(2008/07-0181). Epub 2008 Jul 29.
4
Vocal fold epithelial response to luminal osmotic perturbation.
J Speech Lang Hear Res. 2007 Aug;50(4):886-98. doi: 10.1044/1092-4388(2007/063).
5
The effects of three nebulized osmotic agents in the dry larynx.
J Speech Lang Hear Res. 2007 Jun;50(3):635-46. doi: 10.1044/1092-4388(2007/045).
6
Effective mucus clearance is essential for respiratory health.
Am J Respir Cell Mol Biol. 2006 Jul;35(1):20-8. doi: 10.1165/rcmb.2006-0082SF. Epub 2006 Mar 9.
7
Experimental study of the effects of surface mucus viscosity on the glottic cycle.
J Voice. 2004 Mar;18(1):107-15. doi: 10.1016/j.jvoice.2003.07.004.
8
Regulation of airway surface liquid volume by human airway epithelia.
Pflugers Arch. 2003 Jan;445(4):495-8. doi: 10.1007/s00424-002-0955-1. Epub 2002 Dec 7.
9
Mucus clearance as a primary innate defense mechanism for mammalian airways.
J Clin Invest. 2002 Mar;109(5):571-7. doi: 10.1172/JCI15217.
10
Regulation of vocal fold transepithelial water fluxes.
J Appl Physiol (1985). 2001 Sep;91(3):1401-11. doi: 10.1152/jappl.2001.91.3.1401.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验