Suppr超能文献

验证各种适用于 3,3'-二氨基联苯胺和苏木精染色滤泡性淋巴瘤数字图像的分割自适应阈值方法。

Validation of various adaptive threshold methods of segmentation applied to follicular lymphoma digital images stained with 3,3'-Diaminobenzidine&Haematoxylin.

机构信息

Nalecz Institute of Biocybernetics and Biomedical Engineering, Ks. Trojdena 4 Str., Warsaw, Poland.

出版信息

Diagn Pathol. 2013 Mar 25;8:48. doi: 10.1186/1746-1596-8-48.

Abstract

UNLABELLED

The comparative study of the results of various segmentation methods for the digital images of the follicular lymphoma cancer tissue section is described in this paper. The sensitivity and specificity and some other parameters of the following adaptive threshold methods of segmentation: the Niblack method, the Sauvola method, the White method, the Bernsen method, the Yasuda method and the Palumbo method, are calculated. Methods are applied to three types of images constructed by extraction of the brown colour information from the artificial images synthesized based on counterpart experimentally captured images. This paper presents usefulness of the microscopic image synthesis method in evaluation as well as comparison of the image processing results. The results of thoughtful analysis of broad range of adaptive threshold methods applied to: (1) the blue channel of RGB, (2) the brown colour extracted by deconvolution and (3) the 'brown component' extracted from RGB allows to select some pairs: method and type of image for which this method is most efficient considering various criteria e.g. accuracy and precision in area detection or accuracy in number of objects detection and so on. The comparison shows that the White, the Bernsen and the Sauvola methods results are better than the results of the rest of the methods for all types of monochromatic images. All three methods segments the immunopositive nuclei with the mean accuracy of 0.9952, 0.9942 and 0.9944 respectively, when treated totally. However the best results are achieved for monochromatic image in which intensity shows brown colour map constructed by colour deconvolution algorithm. The specificity in the cases of the Bernsen and the White methods is 1 and sensitivities are: 0.74 for White and 0.91 for Bernsen methods while the Sauvola method achieves sensitivity value of 0.74 and the specificity value of 0.99. According to Bland-Altman plot the Sauvola method selected objects are segmented without undercutting the area for true positive objects but with extra false positive objects. The Sauvola and the Bernsen methods gives complementary results what will be exploited when the new method of virtual tissue slides segmentation be develop.

VIRTUAL SLIDES

The virtual slides for this article can be found here: slide 1: http://diagnosticpathology.slidepath.com/dih/webViewer.php?snapshotId=13617947952577 and slide 2: http://diagnosticpathology.slidepath.com/dih/webViewer.php?snapshotId=13617948230017.

摘要

未加标签

本文描述了对滤泡性淋巴瘤组织切片数字图像的各种分割方法结果的比较研究。计算了以下自适应阈值分割方法的灵敏度、特异性和其他一些参数:尼布莱克(Niblack)方法、绍沃拉(Sauvola)方法、怀特(White)方法、伯恩森(Bernsen)方法、安田(Yasuda)方法和帕卢姆博(Palumbo)方法。方法应用于从基于实验捕获图像合成的人工图像中提取棕色信息构建的三种类型的图像。本文提出了微观图像合成方法在评估和比较图像处理结果中的有用性。对以下三种类型的图像分别应用广泛的自适应阈值方法进行了深入分析:(1) RGB 的蓝色通道;(2) 通过去卷积提取的棕色颜色;(3) 从 RGB 中提取的“棕色分量”,可以选择一些对各种标准(例如,面积检测的准确性和精度或对象检测的准确性)最有效的方法和图像类型。比较表明,对于所有类型的单色图像,怀特(White)、伯恩森(Bernsen)和绍沃拉(Sauvola)方法的结果优于其余方法的结果。当全部处理时,这三种方法对免疫阳性核的分割平均准确性分别为 0.9952、0.9942 和 0.9944。然而,对于通过颜色去卷积算法构建的棕色颜色图的单色图像,得到了最佳结果。在伯恩森(Bernsen)和怀特(White)方法的情况下,特异性为 1,灵敏度分别为:怀特(White)为 0.74,伯恩森(Bernsen)为 0.91,而绍沃拉(Sauvola)方法的灵敏度值为 0.74,特异性值为 0.99。根据 Bland-Altman 图,绍沃拉(Sauvola)方法选择的对象没有分割掉真阳性对象的面积,但有额外的假阳性对象。绍沃拉(Sauvola)和伯恩森(Bernsen)方法的结果是互补的,这将在开发新的虚拟组织切片分割方法时加以利用。

虚拟幻灯片

本文的虚拟幻灯片可在此处找到:幻灯片 1:http://diagnosticpathology.slidepath.com/dih/webViewer.php?snapshotId=13617947952577 和幻灯片 2:http://diagnosticpathology.slidepath.com/dih/webViewer.php?snapshotId=13617948230017。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2f6/3656801/7278afc9616b/1746-1596-8-48-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验