Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, California, USA.
Clin Cancer Res. 2013 May 1;19(9):2518-27. doi: 10.1158/1078-0432.CCR-12-2738. Epub 2013 Mar 26.
Targeted nanotherapies are being developed to improve tumor drug delivery and enhance therapeutic response. Techniques that can predict response will facilitate clinical translation and may help define optimal treatment strategies. We evaluated the efficacy of diffusion-weighted magnetic resonance imaging to monitor early response to CRLX101 (a cyclodextrin-based polymer particle containing the DNA topoisomerase I inhibitor camptothecin) nanotherapy (formerly IT-101), and explored its potential as a therapeutic response predictor using a mechanistic model of tumor cell proliferation.
Diffusion MRI was serially conducted following CRLX101 administration in a mouse lymphoma model. Apparent diffusion coefficients (ADCs) extracted from the data were used as treatment response biomarkers. Animals treated with irinotecan (CPT-11) and saline were imaged for comparison. ADC data were also input into a mathematical model of tumor growth. Histological analysis using cleaved-caspase 3, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, Ki-67, and hematoxylin and eosin (H&E) were conducted on tumor samples for correlation with imaging results.
CRLX101-treated tumors at day 2, 4, and 7 posttreatment exhibited changes in mean ADC = 16 ± 9%, 24 ± 10%, 49 ± 17%, and size (TV) = -5 ± 3%, -30 ± 4%, and -45 ± 13%, respectively. Both parameters were statistically greater than controls [p(ADC) ≤ 0.02, and p(TV) ≤ 0.01 at day 4 and 7], and noticeably greater than CPT-11-treated tumors (ADC = 5 ± 5%, 14 ± 7%, and 18 ± 6%; TV = -15 ± 5%, -22 ± 13%, and -26 ± 8%). Model-derived parameters for cell proliferation obtained using ADC data distinguished CRLX101-treated tumors from controls (P = 0.02).
Temporal changes in ADC specified early CRLX101 treatment response and could be used to model image-derived cell proliferation rates following treatment. Comparisons of targeted and nontargeted treatments highlight the utility of noninvasive imaging and modeling to evaluate, monitor, and predict responses to targeted nanotherapeutics.
正在开发靶向纳米疗法以改善肿瘤药物输送并增强治疗反应。能够预测反应的技术将有助于临床转化,并可能有助于确定最佳治疗策略。我们评估了扩散加权磁共振成像监测 CRLX101(一种包含 DNA 拓扑异构酶 I 抑制剂喜树碱的环糊精聚合物颗粒)纳米治疗(前身为 IT-101)早期反应的功效,并使用肿瘤细胞增殖的机制模型探索了其作为治疗反应预测因子的潜力。
在小鼠淋巴瘤模型中,在给予 CRLX101 后,连续进行扩散 MRI 。从数据中提取的表观扩散系数(ADC)用作治疗反应生物标志物。对接受伊立替康(CPT-11)和生理盐水治疗的动物进行成像以进行比较。还将 ADC 数据输入肿瘤生长的数学模型。对肿瘤样本进行用 cleaved-caspase 3、末端脱氧核苷酸转移酶介导的 dUTP 缺口末端标记、Ki-67 和苏木精和伊红(H&E)进行组织学分析,以与成像结果相关联。
在治疗后第 2、4 和 7 天,CRLX101 治疗的肿瘤的平均 ADC 分别变化了 16 ± 9%、24 ± 10%和 49 ± 17%,大小(TV)分别变化了-5 ± 3%、-30 ± 4%和-45 ± 13%。两个参数均显著大于对照组[p(ADC)≤0.02,且 p(TV)≤0.01 在第 4 和 7 天],且明显大于 CPT-11 治疗的肿瘤(ADC = 5 ± 5%、14 ± 7%和 18 ± 6%;TV =-15 ± 5%、-22 ± 13%和-26 ± 8%)。使用 ADC 数据获得的细胞增殖模型衍生参数可将 CRLX101 治疗的肿瘤与对照组区分开(P = 0.02)。
ADC 的时间变化指定了早期 CRLX101 治疗反应,可用于治疗后对图像衍生的细胞增殖率进行建模。靶向和非靶向治疗的比较突出了非侵入性成像和建模在评估,监测和预测靶向纳米治疗反应中的效用。