Suppr超能文献

基于有限元法的肾脏肿瘤三维生长预测。

FEM-based 3-D tumor growth prediction for kidney tumor.

机构信息

Department of Radiology and Imaging Sciences, National Institute of Health, Bethesda, MD 20892 USA.

出版信息

IEEE Trans Biomed Eng. 2011 Mar;58(3):463-7. doi: 10.1109/TBME.2010.2089522.

Abstract

It is important to predict the tumor growth so that appropriate treatment can be planned in the early stage. In this letter, we propose a finite-element method (FEM)-based 3-D tumor growth prediction system using longitudinal kidney tumor images. To the best of our knowledge, this is the first kidney tumor growth prediction system. The kidney tissues are classified into three types: renal cortex, renal medulla, and renal pelvis. The reaction-diffusion model is applied as the tumor growth model. Different diffusion properties are considered in the model: the diffusion for renal medulla is considered as anisotropic, while those of renal cortex and renal pelvis are considered as isotropic. The FEM is employed to solve the diffusion model. The model parameters are estimated by the optimization of an objective function of overlap accuracy using a hybrid optimization parallel search package. The proposed method was tested on two longitudinal studies with seven time points on five tumors. The average true positive volume fraction and false positive volume fraction on all tumors is 91.4% and 4.0%, respectively. The experimental results showed the feasibility and efficacy of the proposed method.

摘要

预测肿瘤生长非常重要,以便在早期阶段制定适当的治疗方案。在这封信中,我们提出了一种基于有限元方法(FEM)的 3D 肿瘤生长预测系统,该系统使用纵向肾肿瘤图像。据我们所知,这是第一个肾肿瘤生长预测系统。肾组织分为三种类型:肾皮质、肾髓质和肾盂。反应-扩散模型被用作肿瘤生长模型。在该模型中考虑了不同的扩散特性:肾髓质的扩散被认为是各向异性的,而肾皮质和肾盂的扩散被认为是各向同性的。有限元法用于求解扩散模型。模型参数通过使用混合优化并行搜索包对重叠精度的目标函数进行优化来估计。该方法在两个具有七个时间点的五个肿瘤的纵向研究中进行了测试。所有肿瘤的平均真阳性体积分数和假阳性体积分数分别为 91.4%和 4.0%。实验结果表明了该方法的可行性和有效性。

相似文献

1
FEM-based 3-D tumor growth prediction for kidney tumor.基于有限元法的肾脏肿瘤三维生长预测。
IEEE Trans Biomed Eng. 2011 Mar;58(3):463-7. doi: 10.1109/TBME.2010.2089522.

引用本文的文献

5
Integrated PK-PD and agent-based modeling in oncology.肿瘤学中的整合药代动力学-药效学及基于主体的建模
J Pharmacokinet Pharmacodyn. 2015 Apr;42(2):179-89. doi: 10.1007/s10928-015-9403-7. Epub 2015 Jan 15.

本文引用的文献

4
A coupled finite element model of tumor growth and vascularization.肿瘤生长与血管生成的耦合有限元模型。
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):874-81. doi: 10.1007/978-3-540-75759-7_106.
7
A framework for evaluating image segmentation algorithms.一种评估图像分割算法的框架。
Comput Med Imaging Graph. 2006 Mar;30(2):75-87. doi: 10.1016/j.compmedimag.2005.12.001.
9
A cellular automata model of tumor-immune system interactions.肿瘤 - 免疫系统相互作用的细胞自动机模型。
J Theor Biol. 2006 Apr 7;239(3):334-50. doi: 10.1016/j.jtbi.2005.08.002. Epub 2005 Sep 15.
10
Lattice and non-lattice models of tumour angiogenesis.肿瘤血管生成的格点模型和非格点模型。
Bull Math Biol. 2004 Nov;66(6):1785-819. doi: 10.1016/j.bulm.2004.04.001.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验