Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA.
J Hum Hypertens. 2013 Oct;27(10):589-93. doi: 10.1038/jhh.2013.19. Epub 2013 Mar 28.
This paper examines relationships between metrics of visit-to-visit variability (VVV) of blood pressure (BP) to determine which metrics should be calculated in studies of the association of VVV with health outcomes. We examined correlation and agreement between quintiles for standard deviation (s.d.), standard deviation independent of the mean (SDIM), coefficient of variation (CV), successive variation (SV), average real variability (ARV), range, maximum, peak size and trough size of systolic BP in the Trial of Preventing Hypertension placebo arm (n=288). The average age of participants was 48 years. Mean systolic BP was 133.5 mm Hg. VVV metrics were all significantly correlated (P<0.001). Correlations between s.d., SDIM, CV and range and between ARV and SV were ≥0.90. Kappa statistics between quintiles of SD, SDIM, CV and range and between ARV and SV were ≥0.80. In studies of the relationship of VVV with health outcomes, we recommend reporting results for one of the metrics of overall variability (s.d., SDIM, CV), one of the metrics of variability between consecutive visits (SV, ARV), and one or more of the metrics of extreme values at a single visit (maximum, peak size, trough size).
本文探讨了血压(BP)变异性(VVV)的各项指标之间的关系,以确定在研究 VVV 与健康结果的关联时应计算哪些指标。我们在预防高血压试验安慰剂组(n=288)中,检查了收缩压标准差(s.d.)、均值独立标准差(SDIM)、变异系数(CV)、连续变异(SV)、平均真实变异(ARV)、范围、最大值、峰型大小和谷型大小的五分位数之间的相关性和一致性。参与者的平均年龄为 48 岁,平均收缩压为 133.5mmHg。VVV 各项指标均显著相关(P<0.001)。s.d.、SDIM、CV 和范围之间以及 ARV 和 SV 之间的相关性均≥0.90。SD、SDIM、CV 和范围的五分位数之间以及 ARV 和 SV 之间的 Kappa 统计量均≥0.80。在研究 VVV 与健康结果的关系时,我们建议报告整体变异性(s.d.、SDIM、CV)指标之一、连续就诊之间变异性(SV、ARV)指标之一,以及单次就诊时极值(最大值、峰型大小、谷型大小)的一个或多个指标的结果。