Suppr超能文献

三叠纪-侏罗纪大灭绝事件引发了鳄形超目动物的中生代辐射。

Triassic-Jurassic mass extinction as trigger for the Mesozoic radiation of crocodylomorphs.

机构信息

GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Strasse 10, 80333 Munich, Germany.

出版信息

Biol Lett. 2013 Mar 27;9(3):20130095. doi: 10.1098/rsbl.2013.0095. Print 2013 Jun 23.

Abstract

Pseudosuchia, one of the two main clades of Archosauria (Reptilia: Diapsida), suffered a major decline in lineage diversity during the Triassic-Jurassic (TJ) mass extinction (approx. 201 Ma). Crocodylomorpha, including living crocodilians and their extinct relatives, is the only group of pseudosuchians that survived into the Jurassic. We reassess changes in pseudosuchian morphological diversity (disparity) across this time interval, using considerably larger sample sizes than in previous analyses. Our results show that metrics of pseudosuchian disparity did not change significantly across the TJ boundary, contrasting with previous work suggesting low pseudosuchian disparity in the Early Jurassic following the TJ mass extinction. However, a significant shift in morphospace occupation between Late Triassic and Early Jurassic taxa is recognized, suggesting that the TJ extinction of many pseudosuchian lineages was followed by a major and geologically rapid adaptive radiation of crocodylomorphs. This marks the onset of the spectacularly successful evolutionary history of crocodylomorphs in Jurassic and Cretaceous ecosystems.

摘要

槽齿类,主龙类(爬行动物:双孔亚纲)的两个主要演化支之一,在三叠纪-侏罗纪(约 2.01 亿年前)大灭绝期间经历了谱系多样性的重大衰退。鳄形超目,包括现生的鳄鱼及其已灭绝的亲属,是唯一幸存到侏罗纪的槽齿类动物。我们利用比以往分析更大的样本量,重新评估了这一时期槽齿类形态多样性(歧异度)的变化。我们的结果表明,槽齿类的歧异度度量在三叠纪-侏罗纪之交并没有显著变化,与之前的研究结果形成对比,之前的研究表明,在三叠纪-侏罗纪大灭绝之后的侏罗纪早期,槽齿类的多样性较低。然而,我们在晚三叠世和早侏罗世的分类单元之间发现了形态空间占据的显著转变,这表明许多槽齿类谱系在三叠纪-侏罗纪灭绝之后,紧接着发生了鳄形超目的重大且在地质上快速的适应性辐射。这标志着鳄形超目在侏罗纪和白垩纪生态系统中取得巨大成功的演化历史的开始。

相似文献

1
Triassic-Jurassic mass extinction as trigger for the Mesozoic radiation of crocodylomorphs.
Biol Lett. 2013 Mar 27;9(3):20130095. doi: 10.1098/rsbl.2013.0095. Print 2013 Jun 23.
2
Origins of slow growth on the crocodilian stem lineage.
Curr Biol. 2023 Oct 9;33(19):4261-4268.e3. doi: 10.1016/j.cub.2023.08.057. Epub 2023 Sep 14.
3
Morphological and biomechanical disparity of crocodile-line archosaurs following the end-Triassic extinction.
Proc Biol Sci. 2013 Sep 11;280(1770):20131940. doi: 10.1098/rspb.2013.1940. Print 2013 Nov 7.
6
Resetting the evolution of marine reptiles at the Triassic-Jurassic boundary.
Proc Natl Acad Sci U S A. 2011 May 17;108(20):8339-44. doi: 10.1073/pnas.1018959108. Epub 2011 May 2.
7
The first 50Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity.
Biol Lett. 2008 Dec 23;4(6):733-6. doi: 10.1098/rsbl.2008.0441.
8
The pseudosuchian record in paleohistology: A small review.
Anat Rec (Hoboken). 2025 Feb;308(2):245-256. doi: 10.1002/ar.25455. Epub 2024 Apr 24.
9
Faunal turnover of marine tetrapods during the Jurassic-Cretaceous transition.
Biol Rev Camb Philos Soc. 2014 Feb;89(1):1-23. doi: 10.1111/brv.12038. Epub 2013 Apr 13.
10
Environmental drivers of crocodyliform extinction across the Jurassic/Cretaceous transition.
Proc Biol Sci. 2016 Mar 16;283(1826):20152840. doi: 10.1098/rspb.2015.2840.

引用本文的文献

2
Pseudosuchian thermometabolism: A review of the past two decades.
Anat Rec (Hoboken). 2025 Feb;308(2):315-341. doi: 10.1002/ar.25609. Epub 2024 Dec 16.
3
The Angiosperm Terrestrial Revolution buffered ants against extinction.
Proc Natl Acad Sci U S A. 2024 Mar 26;121(13):e2317795121. doi: 10.1073/pnas.2317795121. Epub 2024 Mar 11.
4
Evolution of ancient satellite DNAs in extant alligators and caimans (Crocodylia, Reptilia).
BMC Biol. 2024 Feb 27;22(1):47. doi: 10.1186/s12915-024-01847-8.
5
Locomotion and the early Mesozoic success of Archosauromorpha.
R Soc Open Sci. 2024 Feb 7;11(2):231495. doi: 10.1098/rsos.231495. eCollection 2024 Feb.
8
Femoral specializations to locomotor habits in early archosauriforms.
J Anat. 2022 May;240(5):867-892. doi: 10.1111/joa.13598. Epub 2021 Nov 28.
9
The multi-peak adaptive landscape of crocodylomorph body size evolution.
BMC Evol Biol. 2019 Aug 7;19(1):167. doi: 10.1186/s12862-019-1466-4.
10
Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea.
Nat Commun. 2017 Oct 10;8(1):733. doi: 10.1038/s41467-017-00827-7.

本文引用的文献

1
DINOSAUR PHYSIOLOGY AND THE ORIGIN OF MAMMALS.
Evolution. 1971 Dec;25(4):636-658. doi: 10.1111/j.1558-5646.1971.tb01922.x.
3
Resetting the evolution of marine reptiles at the Triassic-Jurassic boundary.
Proc Natl Acad Sci U S A. 2011 May 17;108(20):8339-44. doi: 10.1073/pnas.1018959108. Epub 2011 May 2.
4
The evolution of mammal-like crocodyliforms in the Cretaceous Period of Gondwana.
Nature. 2010 Aug 5;466(7307):748-51. doi: 10.1038/nature09061.
5
The first 50Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity.
Biol Lett. 2008 Dec 23;4(6):733-6. doi: 10.1098/rsbl.2008.0441.
6
Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs.
Science. 2008 Sep 12;321(5895):1485-8. doi: 10.1126/science.1161833.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验